Open Access System for Information Sharing

Login Library

 

Article
Cited 14 time in webofscience Cited 15 time in scopus
Metadata Downloads

Dendron-Modified Polystyrene Microtiter Plate: Surface Characterization with Picoforce AFM and Influence of Spacing between Immobilized Amyloid Beta Proteins SCIE SCOPUS

Title
Dendron-Modified Polystyrene Microtiter Plate: Surface Characterization with Picoforce AFM and Influence of Spacing between Immobilized Amyloid Beta Proteins
Authors
Roy, DKwak, JWMaeng, WJKim, HPark, JW
Date Issued
2008-12-16
Publisher
AMER CHEMICAL SOC
Abstract
A polystyrene microtiter plate was,coated with a molecular layer of a cone-shaped dendron as a means of providing proper spacing between immobilized biomolecules. For the coating preparation, di(ethylene glycol) vinyl ether was grafted onto the surface of the microtiter plate by a plasma process followed by self-assembly of a second-generation dendron (9-acid) or a third-generation dendron (27-acid). Contact angle analysis revealed a pronounced increase in the hydrophilicity upon plasma grafting, while the hydrophilicity reverted/decreased after dendron immobilization. For analysis by force-based atomic force microscopy (AFM), oligonucleotides were immobilized onto the AFM tip and the plate. The DNA-DNA interaction was observed at all spots examined, which implied that coating of the dendrons was uniform over the entire surface. The effectiveness for biomolecular assays of the spacing on dendron-modified microtiter plates was examined by carrying out an enzyme-linked immunosorbent assay (ELISA), where enhanced detection of different fragments of amyloid beta protein (A beta) was observed when compared with other conventional plates, such as untreated polystyrene or maleic anhydride activated plates. The positive influence of the mesospacing between biomolecules on the microtiter plates for this assay was confirmed.
Keywords
LINKED-IMMUNOSORBENT-ASSAY; SOLID-PHASE; COVALENT BINDING; DNA MICROARRAYS; ANTIBODIES; ADSORPTION; ANTIGEN; BIOTIN; ELISA; IMMUNOASSAYS
URI
https://oasis.postech.ac.kr/handle/2014.oak/26311
DOI
10.1021/LA801872R
ISSN
0743-7463
Article Type
Article
Citation
LANGMUIR, vol. 24, no. 24, page. 14296 - 14305, 2008-12-16
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형준KIM, HYUNGJUN
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse