Open Access System for Information Sharing

Login Library

 

Article
Cited 43 time in webofscience Cited 50 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLemiale, V-
dc.contributor.authorEstrin, Y-
dc.contributor.authorKim, HS-
dc.contributor.authorO'Donnell, R-
dc.date.accessioned2016-04-01T03:14:01Z-
dc.date.available2016-04-01T03:14:01Z-
dc.date.created2010-04-14-
dc.date.issued2010-03-
dc.identifier.issn0927-0256-
dc.identifier.other2010-OAK-0000020482-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/26418-
dc.description.abstractIn this paper, the mechanical response of ultra fine grained metallic materials under high strain rate impact conditions is investigated by means of a finite element based numerical framework. A dislocation based viscoplastic model is used to predict the evolution of the initial fine grain microstructure (average grain size of 203 nm or 238 run, depending on the material history) with impact deformation. A Taylor impact test is simulated in order to assess the validity of a numerical solution through comparison with experiment. It is shown that our model captures the essential features of the mechanical behaviour. A further grain refinement down to the average grain size of 140-160 nm is predicted by the simulations. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.relation.isPartOfCOMPUTATIONAL MATERIALS SCIENCE-
dc.subjectGrain refinement-
dc.subjectUltra fine grained materials-
dc.subjectDislocation based model-
dc.subjectFinite element simulation-
dc.subjectTaylor impact test-
dc.subjectSEVERE PLASTIC-DEFORMATION-
dc.subjectRATE SENSITIVITY-
dc.subjectCOPPER-
dc.subjectMODEL-
dc.subjectBEHAVIOR-
dc.subjectRANGE-
dc.titleGrain refinement under high strain rate impact: A numerical approach-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/J.COMMATSCI.2009.12.018-
dc.author.googleLemiale, Vincent-
dc.author.googleEstrin, Yuri-
dc.author.googleKim, Hyoung Seop-
dc.author.googleO'Donnell, Robert-
dc.relation.volume48-
dc.relation.issue1-
dc.relation.startpage124-
dc.relation.lastpage132-
dc.contributor.id10056225-
dc.relation.journalCOMPUTATIONAL MATERIALS SCIENCE-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationCOMPUTATIONAL MATERIALS SCIENCE, v.48, no.1, pp.124 - 132-
dc.identifier.wosid000275850700014-
dc.date.tcdate2019-02-01-
dc.citation.endPage132-
dc.citation.number1-
dc.citation.startPage124-
dc.citation.titleCOMPUTATIONAL MATERIALS SCIENCE-
dc.citation.volume48-
dc.contributor.affiliatedAuthorKim, HS-
dc.identifier.scopusid2-s2.0-76449114776-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc26-
dc.description.scptc24*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusSEVERE PLASTIC-DEFORMATION-
dc.subject.keywordPlusRATE SENSITIVITY-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusRANGE-
dc.subject.keywordAuthorGrain refinement-
dc.subject.keywordAuthorUltra fine grained materials-
dc.subject.keywordAuthorDislocation based model-
dc.subject.keywordAuthorFinite element simulation-
dc.subject.keywordAuthorTaylor impact test-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse