Open Access System for Information Sharing

Login Library

 

Article
Cited 68 time in webofscience Cited 73 time in scopus
Metadata Downloads

A novel thermosensitive polymer with pH-dependent degradation for drug delivery SCIE SCOPUS

Title
A novel thermosensitive polymer with pH-dependent degradation for drug delivery
Authors
Garripelli, VKKim, JKNamgung, RKim, WJRepka, MAJo, S
Date Issued
2010-02
Publisher
ELSEVIER SCI LTD
Abstract
A class of thermosensitive biodegradable multiblock copolymers with acid-labile acetal linkages were synthesized from Pluronic (R) triblock copolymers (Pluronic (R) P85 and P104) and di-(ethylene glycol) divinyl ether. The novel polymers were engineered to form thermogels at body temperature and degrade in an acidic environment. The Pluronic (R)-based acid-labile polymers were characterized using nuclear magnetic resonance, gel permeation chromatography and differential scanning calorimetry. In vitro biocompatibility of the synthesized polymers was evaluated using calorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The polymers showed reverse thermogelling behavior in water around body temperature. The sol-gel transition temperatures of the polymers synthesized from Pluronic (R) P85 and P104 were lowered from 70.3 to 30 degrees C and from 68.5 to 26.9 degrees C, respectively, when the synthesized polymers were compared with corresponding Pluronic (R) block copolymers at a concentration of 25 wt.% The hydrophobic dye solubilization confirmed the formation of polymeric micelles in the aqueous solution. The sizes of the multiblock copolymers increased on a rise in temperature, indicating that thermal gelation was mediated by micellar aggregation. The thermally driven hydrogels showed preferential polymer degradation at acidic pH. At pH 5.0 and 6.5, the release of 40 kDa fluorescein isothiocyanate-dextran (FITC-dextran) from the thermally formed hydrogels was completed within 2 and 9 days, respectively. However, FITC-dextran was continuously released up to 30 days at neutral pH. The mechanism of FITC-dextran release at pH 5.0 was mainly an acid-catalyzed degradation, whereas both diffusion and pH-dependent degradation resulted in FITC-dextran release at pH 6.5. The novel polymers hold great potential as a pH-sensitive controlled drug delivery system owing to their interesting phase transition behavior and biocompatibility. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Keywords
Thermosensitive; Biodegradable; Acid-labile; Hydrogel; Injectable; BIODEGRADABLE BLOCK-COPOLYMERS; AQUEOUS-SOLUTIONS; TRIBLOCK COPOLYMERS; EXTRACELLULAR PH; POLY(ETHYLENE OXIDE); POLOXAMER 407; PEG; HYDROGELS; POLYACETALS; TEMPERATURE
URI
https://oasis.postech.ac.kr/handle/2014.oak/26535
DOI
10.1016/J.ACTBIO.2009.07.005
ISSN
1742-7061
Article Type
Article
Citation
ACTA BIOMATERIALIA, vol. 6, no. 2, page. 477 - 485, 2010-02
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김원종KIM, WON JONG
Dept of Chemistry
Read more

Views & Downloads

Browse