Open Access System for Information Sharing

Login Library

 

Article
Cited 97 time in webofscience Cited 0 time in scopus
Metadata Downloads

Determination of minimum sample size and discriminatory expression patterns in microarray data SCIE SCOPUS

Title
Determination of minimum sample size and discriminatory expression patterns in microarray data
Authors
Hwang, DHSchmitt, WAStephanopoulos, GStephanopoulos, G
Date Issued
2002-09
Publisher
OXFORD UNIV PRESS
Abstract
Motivation: Transcriptional profiling using microarrays can reveal important information about cellular and tissue expression phenotypes, but these measurements are costly and time consuming. Additionally, tissue sample availability poses further constraints on the number of arrays that can be analyzed in connection with a particular disease or state of interest. It is therefore important to provide a method for the determination of the minimum number of microarrays required to separate, with statistical reliability, distinct disease states or other physiological differences. Results: Power analysis was applied to estimate the minimum sample size required for two-class and multi-class discrimination. The power analysis algorithm calculates the appropriate sample size for discrimination of phenotypic subtypes in a reduced dimensional space obtained by Fisher discriminant analysis (FDA). This approach was tested by applying the algorithm to existing data sets for estimation of the minimum sample size required for drawing certain conclusions on multi-class distinction with statistical reliability. It was confirmed that when the minimum number of samples estimated from power analysis is used, group means in the FDA discrimination space are statistically different.
Keywords
PROFILES
URI
https://oasis.postech.ac.kr/handle/2014.oak/26550
DOI
10.1093/bioinformatics/18.9.1184
ISSN
1367-4803
Article Type
Article
Citation
BIOINFORMATICS, vol. 18, no. 9, page. 1184 - 1193, 2002-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황대희HWANG, DAEHEE
Div of Integrative Biosci & Biotech
Read more

Views & Downloads

Browse