Open Access System for Information Sharing

Login Library

 

Article
Cited 18 time in webofscience Cited 20 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorChoi, JY-
dc.contributor.authorKim, SK-
dc.contributor.authorKANG, YOUN BAE-
dc.contributor.authorLee, HG-
dc.date.accessioned2016-04-01T07:44:09Z-
dc.date.available2016-04-01T07:44:09Z-
dc.date.created2015-06-18-
dc.date.issued2015-03-
dc.identifier.issn1611-3683-
dc.identifier.other2015-OAK-0000033261-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/26814-
dc.description.abstractComposition evolution and number density of oxide inclusions in austenitic stainless steel were investigated by analyzing inclusions in a commercial austenitic stainless steel slab. The composition of inclusions was observed to be strongly dependent on size of the inclusion and location in the slab, both, where the inclusions were found. The number density of inclusions increased as the inclusions were found at deeper location from the slab surface. The basicity (%CaO/%SiO2) of the inclusions decreased with decreasing the inclusion size, while the manganese oxide content (%MnO) increased with decreasing the inclusion size. As the inclusions were located deeper from the slab surface, the basicity (%CaO/%SiO2) was found decreased but (%MnO) increased. Such composition changes along with the position in the slab was attributed to the combination of pre-existing inclusions which were entrapped from the argon oxygen decaburization slag and inclusions precipitated during solidification due to decrease in solubility limit of concerned elements. A theoretical model was developed in order to represent the inclusion composition in the austenitic stainless steel during continuous casting, as a function of the size and location of the inclusion. The model predictions for the composition of inclusion, such as (%CaO/%SiO2), (% MnO), and Al2O3 content, were in good agreement with the measured data.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfSTEEL RESEARCH INTERNATIONAL-
dc.titleCompositional Evolution of Oxide Inclusions in Austenitic Stainless Steel during Continuous Casting-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1002/srin.201300486-
dc.author.googleChoi, JY-
dc.author.googleKim, SK-
dc.author.googleKang, YB-
dc.author.googleLee, HG-
dc.relation.volume86-
dc.relation.issue3-
dc.relation.startpage284-
dc.relation.lastpage292-
dc.contributor.id10641538-
dc.relation.journalSTEEL RESEARCH INTERNATIONAL-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationSTEEL RESEARCH INTERNATIONAL, v.86, no.3, pp.284 - 292-
dc.identifier.wosid000350749900011-
dc.date.tcdate2019-02-01-
dc.citation.endPage292-
dc.citation.number3-
dc.citation.startPage284-
dc.citation.titleSTEEL RESEARCH INTERNATIONAL-
dc.citation.volume86-
dc.contributor.affiliatedAuthorKANG, YOUN BAE-
dc.contributor.affiliatedAuthorLee, HG-
dc.identifier.scopusid2-s2.0-84924278496-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc5-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthoraustenitic-
dc.subject.keywordAuthorcomposition-
dc.subject.keywordAuthorinclusion-
dc.subject.keywordAuthormodel-
dc.subject.keywordAuthorsize-
dc.subject.keywordAuthorslab-
dc.subject.keywordAuthorstainless steel-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse