Open Access System for Information Sharing

Login Library

 

Article
Cited 17 time in webofscience Cited 15 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorDong-Hyun Ahn-
dc.contributor.authorWooyeol Kim-
dc.contributor.authorMinju Kang-
dc.contributor.authorLee Ju Park-
dc.contributor.authorLee, S-
dc.contributor.authorKim, HS-
dc.date.accessioned2016-04-01T07:45:13Z-
dc.date.available2016-04-01T07:45:13Z-
dc.date.created2015-03-06-
dc.date.issued2015-02-11-
dc.identifier.issn1073-5623-
dc.identifier.other2015-OAK-0000033186-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/26834-
dc.description.abstractShock consolidation of ultrafine copper powders at room temperature for bulk nano/ultrafine structured materials is achieved in a gas gun system. The stress states in the powders during the shock consolidation process are analyzed using the finite element method associated with the dynamic densification model (P-alpha model). The mechanical properties of the shock-consolidated copper are evaluated in terms of hardness, static tensile and compressive strengths, and dynamic compressive strength. The microstructures are characterized using an optical microscope, a scanning electron microscope, and X-ray diffraction (XRD). The XRD patterns are quantitatively analyzed in order to estimate the crystallite sizes and dislocation densities using the Convolution Multiple Whole Profile method. The shock-consolidated specimens were highly densified over 98% of relative density with uniform spatial distributions of high hardness. However, insufficient consolidation due to the tensile stress wave induced by the interactions between shock waves in the powders and due to the ultrafine particles requiring high pressure for good bonding has resulted in several defects in the consolidated specimens. These defects cause tension-compression asymmetry in the shock-consolidated materials. Compared with the tensile results, where fractures occurred at low stresses without plastic deformation due to weak interparticle bonding, the high compressive yield stresses of 600 and 900 MPa with large plastic strains are achieved in the static and dynamic compression results, respectively. These high compressive flow stresses are attributed to the extremely high dislocation density and the refinement of the crystallite size via the shock deformations. A microstructure model is proposed for the extremely high dislocation density, where dislocations are generated not only by shock waves but also by plastic flow during the void collapses. The strengths of the shock-consolidated specimen are slightly decreased during the post-shock deformations due to decreases in the excess dislocations despite further refinement of the crystallite size. (C) 2014 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.titlePlastic deformation and microstructural evolution during the shock consolidation of ultrafine copper powders-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/J.MSEA.2014.12.012-
dc.author.googleAhn, DH-
dc.author.googleKim, W-
dc.author.googleKang, M-
dc.author.googlePark, LJ-
dc.author.googleLee, S-
dc.author.googleKim, HS-
dc.relation.volume625-
dc.relation.startpage230-
dc.relation.lastpage244-
dc.contributor.id10056225-
dc.relation.journalMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.652, no.11, pp.230 - 244-
dc.identifier.wosid000349579000028-
dc.date.tcdate2019-02-01-
dc.citation.endPage244-
dc.citation.number11-
dc.citation.startPage230-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume652-
dc.contributor.affiliatedAuthorLee, S-
dc.contributor.affiliatedAuthorKim, HS-
dc.identifier.scopusid2-s2.0-84919698946-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc9-
dc.description.scptc8*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusFINITE-ELEMENT-ANALYSIS-
dc.subject.keywordPlusSTACKING-FAULT ENERGY-
dc.subject.keywordPlusDYNAMIC COMPACTION-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusDISLOCATION DENSITY-
dc.subject.keywordPlusTENSILE DUCTILITY-
dc.subject.keywordPlusGRAIN-REFINEMENT-
dc.subject.keywordPlusPOROUS COPPER-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusCU-
dc.subject.keywordAuthorFinite element method-
dc.subject.keywordAuthorMechanical characterization-
dc.subject.keywordAuthorX-ray diffraction-
dc.subject.keywordAuthorNanostructured materials-
dc.subject.keywordAuthorDislocations-
dc.subject.keywordAuthorGrain refinement-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이성학LEE, SUNG HAK
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse