Open Access System for Information Sharing

Login Library

 

Article
Cited 223 time in webofscience Cited 223 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJang, JW-
dc.contributor.authorPark, S-
dc.contributor.authorBurr, GW-
dc.contributor.authorHwang, H-
dc.contributor.authorJEONG, YOON HA-
dc.date.accessioned2016-04-01T07:54:06Z-
dc.date.available2016-04-01T07:54:06Z-
dc.date.created2015-06-23-
dc.date.issued2015-05-
dc.identifier.issn0741-3106-
dc.identifier.other2015-OAK-0000032783-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/26997-
dc.description.abstractThe optimization of conductance change behavior in synaptic devices based on analog resistive memory is studied for the use in neuromorphic systems. Resistive memory based on Pr1-xCaxMnO3 (PCMO) is applied to a neural network application (classification of Modified National Institute of Standards and Technology handwritten digits using a multilayer perceptron trained with backpropagation) under a wide variety of simulated conductance change behaviors. Linear and symmetric conductance changes (e.g., self-similar response during both increasing and decreasing device conductance) are shown to offer the highest classification accuracies. Further improvements can be obtained using nonidentical training pulses, at the cost of requiring measurement of individual conductance during training. Such a system can be expected to achieve, with our existing PCMO-based synaptic devices, a generalization accuracy on a previously-unseen test set of 90.55%. These results are promising for hardware demonstration of high neuromorphic accuracies using existing synaptic devices.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.relation.isPartOfIEEE ELECTRON DEVICE LETTERS-
dc.titleOptimization of Conductance Change in Pr1-xCaxMnO3-Based Synaptic Devices for Neuromorphic Systems-
dc.typeArticle-
dc.contributor.college전자전기공학과-
dc.identifier.doi10.1109/LED.2015.2418342-
dc.author.googleJang, JW-
dc.author.googlePark, S-
dc.author.googleBurr, GW-
dc.author.googleHwang, H-
dc.author.googleJeong, YH-
dc.relation.volume36-
dc.relation.issue5-
dc.relation.startpage457-
dc.relation.lastpage459-
dc.contributor.id10106021-
dc.relation.journalIEEE ELECTRON DEVICE LETTERS-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationIEEE ELECTRON DEVICE LETTERS, v.36, no.5, pp.457 - 459-
dc.identifier.wosid000353566300012-
dc.date.tcdate2019-02-01-
dc.citation.endPage459-
dc.citation.number5-
dc.citation.startPage457-
dc.citation.titleIEEE ELECTRON DEVICE LETTERS-
dc.citation.volume36-
dc.contributor.affiliatedAuthorHwang, H-
dc.contributor.affiliatedAuthorJEONG, YOON HA-
dc.identifier.scopusid2-s2.0-84928736641-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc48-
dc.description.scptc27*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordAuthorResistive random-access memory (ReRAM)-
dc.subject.keywordAuthormemristor-
dc.subject.keywordAuthorlong-term potentiation (LTP)-
dc.subject.keywordAuthorlong-term depression (LTD)-
dc.subject.keywordAuthorhardware neural network (HNN)-
dc.subject.keywordAuthorbio-inspired system-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse