Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 13 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKyung Song-
dc.contributor.authorGa-Young Shin-
dc.contributor.authorKim, JK-
dc.contributor.authorOh, SH-
dc.contributor.authorChristoph T. Koch-
dc.date.accessioned2016-04-01T08:12:11Z-
dc.date.available2016-04-01T08:12:11Z-
dc.date.created2013-03-07-
dc.date.issued2013-04-
dc.identifier.issn0304-3991-
dc.identifier.other2013-OAK-0000026895-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/27456-
dc.description.abstractDark-field inline electron holography has recently been established as a convenient method to map strain in semiconductor devices, combining high precision, low noise, sub-nm spatial resolution and fields-of-view larger than 1 mu m. Here we compare two approaches to reconstruct the geometric phase from a transmission electron microscopy dark-field focal series and their effects on the strain measurement: the transport-of-intensity-equation (TIE) and a flux-preserving iterative approach. For this task, we used a GaN-based light emitting diode with a highly complex heterostructure as a model system. While the TIE relies on 3 images only but requires the optimization of two free parameters (defocus step and low-limit cut-off frequency), the iterative reconstruction algorithm involves no adjustable parameters and uses images recorded at 9 different planes of focus with quadratically increasing defocus values. Optimum parameters for the TIE-reconstruction could be identified. However, the iterative phase retrieval approach yields the strain values that agree best with the expected strain levels and provides also higher spatial resolution. (c) 2012 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfULTRAMICROSCOPY-
dc.subjectDark-field inline holography-
dc.subjectTransport of intensity equation-
dc.subjectLattice strain-
dc.subjectLight emitting diode-
dc.subjectMulti-quantum well-
dc.subjectINTENSITY EQUATION-
dc.subjectATOMIC-RESOLUTION-
dc.subjectFOCUS-VARIATION-
dc.subjectMICROSCOPY-
dc.subjectRECONSTRUCTION-
dc.subjectMICROGRAPHS-
dc.subjectTRANSPORT-
dc.subjectALGORITHM-
dc.subjectIMAGES-
dc.titleStrain mapping of LED devices by dark-field inline electron holography: Comparison between deterministic and iterative phase retrieval approaches-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/J.ULTRAMIC.2012.07.010-
dc.author.googleSong, K-
dc.author.googleShin, GY-
dc.author.googleKim, JK-
dc.author.googleOh, SH-
dc.author.googleKoch, CT-
dc.relation.volume127-
dc.relation.startpage119-
dc.relation.lastpage125-
dc.contributor.id10100864-
dc.relation.journalULTRAMICROSCOPY-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationULTRAMICROSCOPY, v.127, pp.119 - 125-
dc.identifier.wosid000316659100018-
dc.date.tcdate2019-02-01-
dc.citation.endPage125-
dc.citation.startPage119-
dc.citation.titleULTRAMICROSCOPY-
dc.citation.volume127-
dc.contributor.affiliatedAuthorKim, JK-
dc.contributor.affiliatedAuthorOh, SH-
dc.identifier.scopusid2-s2.0-84875507238-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc10-
dc.description.scptc10*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusINTENSITY EQUATION-
dc.subject.keywordPlusATOMIC-RESOLUTION-
dc.subject.keywordPlusFOCUS-VARIATION-
dc.subject.keywordPlusMICROSCOPY-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusMICROGRAPHS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusIMAGES-
dc.subject.keywordAuthorDark-field inline holography-
dc.subject.keywordAuthorTransport of intensity equation-
dc.subject.keywordAuthorLattice strain-
dc.subject.keywordAuthorLight emitting diode-
dc.subject.keywordAuthorMulti-quantum well-
dc.relation.journalWebOfScienceCategoryMicroscopy-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMicroscopy-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김종규KIM, JONG KYU
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse