Open Access System for Information Sharing

Login Library

 

Article
Cited 35 time in webofscience Cited 0 time in scopus
Metadata Downloads

Investigation of the Platinum Cluster Size and Location on Zeolite KL with 129Xe NMR, XAFS and Xenon Adsorption SCIE SCOPUS

Title
Investigation of the Platinum Cluster Size and Location on Zeolite KL with 129Xe NMR, XAFS and Xenon Adsorption
Authors
Cho, SJAhn, WSHong, SBRyoo, R
Date Issued
1996-03-21
Publisher
American Chemical Society
Abstract
Although platinum clusters supported on zeolite KL (Pt/KL) were extensively investigated by other laboratories due to remarkable catalytic activity and selectivity for the conversion of linear alkanes to aromatic compounds, there was still some controversy over the cluster size and location in the zeolite channel. The controversy came from difficulty in obtaining high Pt content suitable for the physical characterization without altering the cluster size, compared with the practical catalyst samples. In the present study, we were able to increase the Pt content to 5.2 wt % without changing the physical properties of the Pt/KL, following a procedure using the ion exchange of Pt(NH3)(4)(2+). We have characterized the Pt cluster size and location on the zeolite using the chemical shift in Xe-129 NMR spectroscopy of adsorbed xenon and the X-ray absorption fine structure (XAFS) obtained at the Pt L(III) edge. Results from the Xe-129 NMR and XAFS indicate that the Pt cluster consisted of five to seven Pt atoms located inside the zeolite main channel which is formed by interconnection of cages 1.1 nm in diameter to each other in a linear way through 0.71-nm apertures. The Pt cluster has been found to chemisorb approximately two hydrogen atoms per total Pt at 296 K. The Pt cluster adsorbed as much as 0.4 Xe/Pt at 296 K, which is much more than 0.07 Xe/Pt obtained for a 1-nm Pt cluster entrapped inside the supercage of zeolite NaY (Pt/NaY) under the same conditions. It is believed that a cluster consisting of more than five to seven Pt atoms had difficultly adsorbing such a large quantity of xenon under the experimental condition. The small Pt cluster did not cause considerable pore blockage against the adsorption of Xe (0.43 nm in diameter) and CCl4 (0.59 nm in diameter) into the zeolite pore, indicating the location at a bulged part within the 1.1-nm pore.
Keywords
ABSORPTION FINE-STRUCTURE; NEAR-EDGE-STRUCTURE; HYDROGEN CHEMISORPTION; HEXANE AROMATIZATION; Y-ZEOLITE; SPECTROSCOPY; CATALYSIS; PARTICLE; SURFACE; GROWTH
URI
https://oasis.postech.ac.kr/handle/2014.oak/27682
DOI
10.1021/jp952594b
ISSN
0022-3654
Article Type
Article
Citation
JOURNAL OF PHYSICAL CHEMISTRY, vol. 100, no. 12, page. 4996 - 5003, 1996-03-21
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

홍석봉HONG, SUK BONG
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse