Open Access System for Information Sharing

Login Library

 

Article
Cited 59 time in webofscience Cited 69 time in scopus
Metadata Downloads

In Vivo Real-Time Bioimaging of Hyaluronic Acid Derivatives Using Quantum Dots SCIE SCOPUS

Title
In Vivo Real-Time Bioimaging of Hyaluronic Acid Derivatives Using Quantum Dots
Authors
Kim, JKim, KSJiang, GKang, HKim, SKim, BSPark, MHHahn, SK
Date Issued
2008-12
Publisher
JOHN WILEY & SONS INC
Abstract
The effect of chemical modification of hyaluronic acid (HA) on its distribution throughout the body was successfully visualized in nude mice through real time bioimaging using quantum dots (QDots). Adipic acid dihydrazide modified HA (HA-ADH) was synthesized and conjugated with QDots having carboxyl terminal ligands activated with 1-ethyl-3-(3dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. The formation of HA-QDot conjugates could be confirmed by gel permeation chromatography, fluorometry, transmission electron microscopy, and zeta-size analysis. According to the real-time bioimaging of HA-QDot conjugates after subcutaneous injection to nude mice, the fluorescence of HA-QDot conjugates with a near infrared wavelength of 800 nm could be detected up to 2 months, whereas that with an emission wavelength of 655 nm disappeared almost completely within 5 days. The results can be ascribed to the fact that near infrared light has a high penetration depth of about 7-10 nm for visible light. Thereby, using QDots with a near-infrared emission wavelength of 800 nm, the distribution of HA-QDot conjugates throughout the body was bioimaged in real-time after their tail-vein injection into nude mice. HA-QDot conjugates with 35 mol% ADH content maintaining enough binding sites for HA receptors were mainly accumulated in the liver, while those with 68 mol% ADH content losing much of HA characteristics were evenly distributed to the tissues in the body The results are well matched with the fact that HA receptors are abundantly present In the liver with a high specificity to HA molecules. (C) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1144-1153, 2008.
Keywords
hyaluronic acid; chemical modification; bioimaging; quantum dot; body distribution; INTRACELLULAR DELIVERY; RELEASE FORMULATION; CELLS; ERYTHROPOIETIN; RECEPTOR; LYVE-1; MICE
URI
https://oasis.postech.ac.kr/handle/2014.oak/29056
DOI
10.1002/BIP.21066
ISSN
0006-3525
Article Type
Article
Citation
BIOPOLYMERS, vol. 89, no. 12, page. 1144 - 1153, 2008-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse