Open Access System for Information Sharing

Login Library

 

Article
Cited 8 time in webofscience Cited 9 time in scopus
Metadata Downloads

E x B flow velocity deduced from the poloidal motion of fluctuation patterns in neutral beam injected L-mode plasmas on KSTAR SCIE SCOPUS

Title
E x B flow velocity deduced from the poloidal motion of fluctuation patterns in neutral beam injected L-mode plasmas on KSTAR
Authors
Lee, WLeem, JYun, GSPark, HKKo, SHChoi, MJWang, WXBudny, RVEthier, SPark, YSLuhmann, NCDomier, CWLee, KDKo, WHKim, KW
Date Issued
2016-05
Publisher
AIP Publishing
Abstract
A method for direct assessment of the equilibrium E x B flow velocity (E x B flow shear is responsible for the turbulence suppression and transport reduction in tokamak plasmas) is investigated based on two facts. The first one is that the apparent poloidal rotation speed of density fluctuation patterns is close to the turbulence rotation speed in the direction perpendicular to the local magnetic field line within the flux surface. And the second "well-known" fact is that the turbulence rotation velocity consists of the equilibrium E x B flow velocity and intrinsic phase velocity of turbulence in the E x B flow frame. In the core region of the low confinement (L-mode) discharges where a strong toroidal rotation is induced by neutral beam injection, the apparent poloidal velocities (and turbulence rotation velocities) are good approximations of the E x B flow velocities since linear gyrokinetic simulations suggest that the intrinsic phase velocity of the dominant turbulence is significantly lower than the apparent poloidal velocity. In the neutral beam injected L-mode plasmas, temporal and spatial scales of the measured turbulence are studied by comparing with the local equilibrium parameters relevant to the ion-scale turbulence. Published by AIP Publishing.
Keywords
REVERSED SHEAR PLASMAS; RADIAL ELECTRIC-FIELD; DOPPLER REFLECTOMETRY; MAGNETIC SHEAR; TOKAMAK; CONFINEMENT; PARAMETERS; TURBULENCE; TRANSPORT; ROTATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/29948
DOI
10.1063/1.4949350
ISSN
1070-664X
Article Type
Article
Citation
PHYSICS OF PLASMAS, vol. 23, no. 5, page. 52510, 2016-05
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse