Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorTae-In Chung-
dc.contributor.authorCho, JW-
dc.contributor.authorKang, YB-
dc.date.accessioned2016-08-26T07:33:19Z-
dc.date.available2016-08-26T07:33:19Z-
dc.date.created2016-01-24-
dc.date.issued2016-02-
dc.identifier.issn1073-5615-
dc.identifier.other2016-OAK-0000035736-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/29953-
dc.description.abstractCu, as one of the typical tramp elements, is known to cause hot shortness during reheating of slabs followed by hot rolling of sheet products. In order to prevent such harmful aspects, a new idea is proposed by using synthetic powders containing NiO in the mold flux during continuous casting of the slab. During the casting, NiO is reduced and absorbed on initial solidified steel shell, and a Ni-rich layer is developed near the surface region of the slab. According to the proposed idea, it is expected that both the Cu solubility and the melting temperature of Cu-segregated region would increase considerably by virtue of Ni-rich layer, which is believed to play an important role to prevent the Cu hot shortness. A series of laboratory-scale experiments were carried out in order to confirm the reduction and the absorption of Ni into the steel matrix. It was observed by SEM-EDS and FE-EPMA that a Ni-enriched layer, as thick as a few hundred mu m, formed near the surface of the slab. Also, a number of laboratory-scale heat treatment tests under oxidizing atmosphere showed that the samples with the Ni-enriched layer had a decreased Cu enrichment at the interface between scale and steel, compared to a case without Ni-rich layer. A pilot-plant-scale steel slab (medium carbon steel containing 0.3 wt pct Cu) was obtained in a continuous casting process with the NiO-containing mold flux, and a Ni-enriched layer was also observed. It was concluded that the use of NiO in the mold flux is a promising new approach for suppressing the hot shortness of Cu-containing steel, without an expensive addition of Ni to the whole steel matrix.-
dc.description.statementofresponsibilityopen-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE-
dc.titleA Novel Technology to Develop a Nickel-Enriched Layer on Slab Surface by Utilizing NiO-Containing Synthetic Powder-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1007/S11663-015-0459-Y-
dc.author.googleChung, TI-
dc.author.googleCho, JW-
dc.author.googleKang, YB-
dc.relation.volume47-
dc.relation.issue1-
dc.relation.startpage779-
dc.relation.lastpage787-
dc.contributor.id11059812-
dc.relation.journalMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, v.47, no.1, pp.779 - 787-
dc.identifier.wosid000368692300071-
dc.date.tcdate2018-03-23-
dc.citation.endPage787-
dc.citation.number1-
dc.citation.startPage779-
dc.citation.titleMETALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE-
dc.citation.volume47-
dc.contributor.affiliatedAuthorCho, JW-
dc.contributor.affiliatedAuthorKang, YB-
dc.identifier.scopusid2-s2.0-84958183138-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.scptc0*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-TEMPERATURE OXIDATION-
dc.subject.keywordPlusSATURATED IRON MELT-
dc.subject.keywordPlusLOW-CARBON STEEL-
dc.subject.keywordPlusEVAPORATION RATE-
dc.subject.keywordPlusMOLTEN IRON-
dc.subject.keywordPlusMULTICOMPONENT GASES-
dc.subject.keywordPlusREACTION-MECHANISMS-
dc.subject.keywordPlusCOPPER DISTRIBUTION-
dc.subject.keywordPlusREDUCED PRESSURE-
dc.subject.keywordPlusBEHAVIOR-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조중욱CHO, JUNG WOOK
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse