Open Access System for Information Sharing

Login Library

 

Article
Cited 50 time in webofscience Cited 59 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, DE-
dc.contributor.authorPark, SC-
dc.contributor.authorYu, DI-
dc.contributor.authorKim, MH-
dc.contributor.authorAhn, HS-
dc.date.accessioned2017-07-19T12:11:03Z-
dc.date.available2017-07-19T12:11:03Z-
dc.date.created2016-01-06-
dc.date.issued2015-07-13-
dc.identifier.issn0003-6951-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/35393-
dc.description.abstractBased on the unique design of the surface morphology, we investigated the effects of gravity and capillary pressure on Critical heat flux (CHF). The micro-structured surfaces for pool boiling tests were comprised with both the rectangular cavity and microchannel structures. The microcavity structures could intrinsically block the liquid flow by capillary pressure effect, and the capillary flow into the boiling surface was one-dimensionally induced only through the microchannel region. Thus, we could clearly establish the relationship between the CHF and capillary wicking flow. The driving potentials for the liquid inflow can be classified into the hydrostatic head by gravitational force, and the capillary pressure induced by the interactions of vapor bubbles, liquid film, and surface solid structures. Through the analysis of the experimental data and visualization of vapor bubble behaviors, we present that the liquid supplement to maintain the nucleate boiling regime in pool boiling condition is governed by the gravitational pressure head and capillary pressure effect. (C) 2015 AIP Publishing LLC.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.relation.isPartOfAPPLIED PHYSICS LETTERS-
dc.subjectCHF ENHANCEMENT-
dc.subjectPOOL-
dc.subjectEVAPORATION-
dc.subjectMODEL-
dc.titleEnhanced critical heat flux by capillary driven liquid flow on the well-designed surface-
dc.typeArticle-
dc.identifier.doi10.1063/1.4926971-
dc.type.rimsART-
dc.identifier.bibliographicCitationAPPLIED PHYSICS LETTERS, v.107, no.2-
dc.identifier.wosid000358530300058-
dc.date.tcdate2019-03-01-
dc.citation.number2-
dc.citation.titleAPPLIED PHYSICS LETTERS-
dc.citation.volume107-
dc.contributor.affiliatedAuthorKim, MH-
dc.identifier.scopusid2-s2.0-84937060795-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc20-
dc.description.scptc20*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusCHF ENHANCEMENT-
dc.subject.keywordPlusPOOL-
dc.subject.keywordPlusEVAPORATION-
dc.subject.keywordPlusMODEL-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse