Open Access System for Information Sharing

Login Library

 

Article
Cited 18 time in webofscience Cited 18 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorBaek, K-
dc.contributor.authorSong, K-
dc.contributor.authorSon, SK-
dc.contributor.authorOh, JW-
dc.contributor.authorJeon, SJ-
dc.contributor.authorKim, W-
dc.contributor.authorKim, HJ-
dc.contributor.authorOh, SH-
dc.date.accessioned2017-07-19T12:16:34Z-
dc.date.available2017-07-19T12:16:34Z-
dc.date.created2016-01-21-
dc.date.issued2015-06-
dc.identifier.issn1884-4049-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/35547-
dc.description.abstractPhase-change random access memory (PCRAM) is one of the most promising nonvolatile memory devices. However, inability to secure consistent and reliable switching operations in nanometer-scale programing volumes limits its practical use for highdensity applications. Here, we report in situ transmission electron microscopy investigation of the DC set switching of Ge-Sb-Te (GST)-based vertical PCRAM cells. We demonstrate that the microstructure of GST, particularly the passive component surrounding the dome-shaped active switching volume, plays a critical role in determining the local temperature distribution and is therefore responsible for inconsistent cell-to-cell switching behaviors. As demonstrated by a PCRAM cell with a highly crystallized GST matrix, the excessive Joule heat can cause melting and evaporation of the switching volume, resulting in device failure. The failure occurred via two-step void formation due to accelerated phase separation in the molten GST by the polaritydependent atomic migration of constituent elements. The presented real-time observations contribute to the understanding of inconsistent switching and premature failure of GST-based PCRAM cells and can guide future design of reliable PCRAM.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNPG Asia Materials-
dc.titleMicrostructure-dependent DC set switching behaviors of Ge-Sb-Te-based phase-change random access memory devices accessed by in situ TEM-
dc.typeArticle-
dc.identifier.doi10.1038/AM.2015.49-
dc.type.rimsART-
dc.identifier.bibliographicCitationNPG Asia Materials, v.7-
dc.identifier.wosid000357094900010-
dc.date.tcdate2019-03-01-
dc.citation.titleNPG Asia Materials-
dc.citation.volume7-
dc.contributor.affiliatedAuthorOh, SH-
dc.identifier.scopusid2-s2.0-84946908193-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc7-
dc.description.scptc6*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusNONVOLATILE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusDIAGRAM-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusDRIFT-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

오상호OH, SANG HO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse