Open Access System for Information Sharing

Login Library

 

Article
Cited 24 time in webofscience Cited 27 time in scopus
Metadata Downloads

Integrated analysis of global proteome, phosphoproteome, and glycoproteome enables complementary interpretation of disease-related protein networks SCIE SCOPUS

Title
Integrated analysis of global proteome, phosphoproteome, and glycoproteome enables complementary interpretation of disease-related protein networks
Authors
Park, JMPark, JHMun, DGBae, JJung, JHBack, SLee, HKim, HJung, HJKim, HKLee, HKim, KPHwang, DLee, SW
Date Issued
2015-12-11
Publisher
Nature Publishing Group
Abstract
Multi-dimensional proteomic analyses provide different layers of protein information, including protein abundance and post-translational modifications. Here, we report an integrated analysis of protein expression, phosphorylation, and N-glycosylation by serial enrichments of phosphorylation and N-glycosylation (SEPG) from the same tissue samples. On average, the SEPG identified 142,106 unmodified peptides of 8,625 protein groups, 18,846 phosphopeptides (15,647 phosphosites), and 4,019 N-glycopeptides (2,634 N-glycosites) in tumor and adjacent normal tissues from three gastric cancer patients. The combined analysis of these data showed that the integrated analysis additively improved the coverages of gastric cancer-related protein networks; phosphoproteome and N-glycoproteome captured predominantly low abundant signal proteins, and membranous or secreted proteins, respectively, while global proteome provided abundances for general population of the proteome. Therefore, our results demonstrate that the SEPG can serve as an effective approach for multi-dimensional proteome analyses, and the holistic profiles of protein expression and PTMs enabled improved interpretation of disease-related networks by providing complementary information.
URI
https://oasis.postech.ac.kr/handle/2014.oak/36171
DOI
10.1038/SREP18189
ISSN
2045-2322
Article Type
Article
Citation
Scientific Reports, vol. 5, 2015-12-11
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황대희HWANG, DAEHEE
Div of Integrative Biosci & Biotech
Read more

Views & Downloads

Browse