Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Rapid Communication Biomimetic Repeat Protein Derived from Xenopus Tropicalis for Fibrous Scaffold Fabrication SCIE SCOPUS

Title
Rapid Communication Biomimetic Repeat Protein Derived from Xenopus Tropicalis for Fibrous Scaffold Fabrication
Authors
Kwon, YYang, YJJung, DHwang, BHCha, HJ
Date Issued
2015-12
Publisher
WILEY-BLACKWELL
Abstract
Collagen, silk, and elastin are the fibrous proteins consist of representative amino acid repeats. Because these proteins exhibited distinguishing mechanical properties, they have been utilized in diverse applications, such as fiber-based sensors, filtration membranes, supporting materials, and tissue engineering scaffolds. Despite their infinite prevalence and potential, most studies have only focused on a few repeat proteins. In this work, the hypothetical protein with a repeat motif derived from the frog Xenopus tropicalis was obtained and characterized for its potential as a novel protein-based material. The codon-optimized recombinant frog repeat protein, referred to as 'xetro', was produced at a high rate in a bacterial system, and an acid extraction-based purified xetro protein was successfully fabricated into microfibers and nanofibers using wet spinning and electrospinning, respectively. Specifically, the wet-spun xetro microfibers demonstrated about 2-and 1.5-fold higher tensile strength compared with synthetic polymer polylactic acid and cross-linked collagen, respectively. In addition, the wet-spun xetro microfibers showed about sevenfold greater stiffness than collagen. Therefore, the mass production potential and greater mechanical properties of the xetro fiber may result in these fibers becoming a new promising fiber-based material for biomedical engineering. (C) 2015 Wiley Periodicals, Inc.
URI
https://oasis.postech.ac.kr/handle/2014.oak/36179
DOI
10.1002/BIP.22735
ISSN
0006-3525
Article Type
Article
Citation
BIOPOLYMERS, vol. 103, no. 12, page. 659 - 664, 2015-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

차형준CHA, HYUNG JOON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse