Open Access System for Information Sharing

Login Library

 

Article
Cited 12 time in webofscience Cited 13 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, JW-
dc.contributor.authorKang, MH-
dc.date.accessioned2017-07-19T12:43:05Z-
dc.date.available2017-07-19T12:43:05Z-
dc.date.created2016-01-19-
dc.date.issued2015-07-22-
dc.identifier.issn1098-0121-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/36314-
dc.description.abstractDensity-functional calculations are used to verify the atomic structure of the hexagonal In/Si(111)-(root 7 x root 3) surface, which has been considered to represent an ultimate two-dimensional (2D) limit of metallic In overlayers. Contrary to the prevailing assumption, this surface consists of not a single layer but a double layer of In atoms, which corresponds to a hexagonal deformation of the well-established rectangular In double layer formed on Si(111)-(root 7 x root 3) [Park and Kang, Phys. Rev. Lett. 109, 166102 (2012)]. The same double-layer thickness accounts well for the typical coexistence of the hexagonal and rectangular phases and their similar 2D electronic structures. It is thus conclusive that, regardless of rectangular or hexagonal, the In/Si(111)-(root 7 x root 3) surface does not represent a one-atom-thick In overlayer.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.subjectCHARGE-DENSITY-WAVE-
dc.subjectSURFACE-
dc.subjectSUPERCONDUCTIVITY-
dc.subjectRECONSTRUCTION-
dc.subjectSILICON-
dc.titleHexagonal indium double layer on Si(111)-root 7 x root 3-
dc.typeArticle-
dc.identifier.doi10.1103/PHYSREVB.92.045306-
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.92, no.4-
dc.identifier.wosid000358373600001-
dc.date.tcdate2019-02-01-
dc.citation.number4-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume92-
dc.contributor.affiliatedAuthorKang, MH-
dc.identifier.scopusid2-s2.0-84939210504-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc3-
dc.description.scptc3*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusCHARGE-DENSITY-WAVE-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusSUPERCONDUCTIVITY-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusSILICON-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse