Open Access System for Information Sharing

Login Library

 

Article
Cited 35 time in webofscience Cited 35 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJung, JH-
dc.contributor.authorKotal, M-
dc.contributor.authorJang, MH-
dc.contributor.authorLee, J-
dc.contributor.authorCho, YH-
dc.contributor.authorKim, WJ-
dc.contributor.authorOh, IK-
dc.date.accessioned2017-07-19T12:58:15Z-
dc.date.available2017-07-19T12:58:15Z-
dc.date.created2016-12-30-
dc.date.issued2016-07-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/36710-
dc.description.abstractHexagonal boron nitride (h-BN) has considerable potential for applications owing to its attractive features including good thermal conductivity, chemical stability, and unique optical properties. However, because h-BN is chemically inert and thermally stable, it is hard to synthesize boron nitride quantum dots (BNQDs) using chemical methods such as oxidation, hetero-atom doping or functionalization. Here, we report a defect engineering method to synthesize BNQDs from h-BN using physical energy sources including an impinging process of heated iron nanoparticles, microwave irradiation and sonication. Furthermore, edge-hydroxylated functionalization was employed to enhance the intracellular uptake of the BNQDs in cells for bioimaging. The edge-hydroxylated BNQDs (EH-BNQDs) showed blue colored photoluminescence with 325 nm laser excitation, good cytotoxicity performance with approximately 100% cell viability, and a good attachment to cell surfaces. The successful endocytosis of EH-BNQDs using a cancer cell line was also demonstrated.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.relation.isPartOfRSC Advances-
dc.titleDefect engineering route to boron nitride quantum dots and edge-hydroxylated functionalization for bio-imaging-
dc.typeArticle-
dc.identifier.doi10.1039/c6ra12455k-
dc.type.rimsART-
dc.identifier.bibliographicCitationRSC Advances, v.6, no.77, pp.73939 - 73946-
dc.identifier.wosid000381490100124-
dc.date.tcdate2019-02-01-
dc.citation.endPage73946-
dc.citation.number77-
dc.citation.startPage73939-
dc.citation.titleRSC Advances-
dc.citation.volume6-
dc.contributor.affiliatedAuthorKim, WJ-
dc.identifier.scopusid2-s2.0-84981318481-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc5-
dc.description.isOpenAccessN-
dc.type.docTypeARTICLE-
dc.subject.keywordPlusLITHIUM ION BATTERY-
dc.subject.keywordPlusPHOTOVOLTAIC DEVICES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusPALLADIUM-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusANODE-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김원종KIM, WON JONG
Dept of Chemistry
Read more

Views & Downloads

Browse