Open Access System for Information Sharing

Login Library

 

Article
Cited 145 time in webofscience Cited 150 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorShi, X-
dc.contributor.authorJeong, H-
dc.contributor.authorOh, SJ-
dc.contributor.authorMa, M-
dc.contributor.authorZhang, K-
dc.contributor.authorKwon, J-
dc.contributor.authorChoi, IT-
dc.contributor.authorChoi, IY-
dc.contributor.authorKim, HK-
dc.contributor.authorKim, JK-
dc.contributor.authorPark, JH-
dc.date.accessioned2017-07-19T12:59:22Z-
dc.date.available2017-07-19T12:59:22Z-
dc.date.created2017-01-04-
dc.date.issued2016-06-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/36734-
dc.description.abstractVarious tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method to overcome this contradiction by incorporating a hybrid conductive distributed Bragg reflector on the back side of the transparent conducting substrate for the front photoelectrochemical electrode, which functions as both an optical filter and a conductive counter-electrode of the rear dye-sensitized solar cell. The hybrid conductive distributed Bragg reflectors were designed to be transparent to the long-wavelength part of the incident solar spectrum (lambda>500 nm) for the rear solar cell, while reflecting the short-wavelength photons (lambda<500 nm) which can then be absorbed by the front photoelectrochemical electrode for enhanced photocurrent generation.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature Communications-
dc.titleUnassisted photoelectrochemical water splitting exceeding 7% solar to hydrogen conversion efficiency using photon recycling-
dc.typeArticle-
dc.identifier.doi10.1038/NCOMMS11943-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Communications, v.7, pp.11943-
dc.identifier.wosid000379084800001-
dc.date.tcdate2019-02-01-
dc.citation.startPage11943-
dc.citation.titleNature Communications-
dc.citation.volume7-
dc.contributor.affiliatedAuthorKim, JK-
dc.identifier.scopusid2-s2.0-84975818912-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc41-
dc.description.scptc29*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusEARTH-ABUNDANT CATALYSTS-
dc.subject.keywordPlusTANDEM CELLS-
dc.subject.keywordPlusNEUTRAL PH-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusPHOTOANODE-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusDEVICE-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김종규KIM, JONG KYU
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse