Open Access System for Information Sharing

Login Library

 

Article
Cited 202 time in webofscience Cited 232 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorChoi, YJ-
dc.contributor.authorKim, TG-
dc.contributor.authorJeong, J-
dc.contributor.authorYi, HG-
dc.contributor.authorPark, JW-
dc.contributor.authorHwang, W-
dc.contributor.authorCho, DW-
dc.date.accessioned2017-07-19T13:27:06Z-
dc.date.available2017-07-19T13:27:06Z-
dc.date.created2017-02-03-
dc.date.issued2016-10-
dc.identifier.issn2192-2640-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/36995-
dc.description.abstractEngineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.-
dc.languageEnglish-
dc.publisherWILEY-BLACKWELL-
dc.relation.isPartOfADVANCED HEALTHCARE MATERIALS-
dc.title3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink-
dc.typeArticle-
dc.identifier.doi10.1002/adhm.201600483-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED HEALTHCARE MATERIALS, v.5, no.20, pp.2636 - 2645-
dc.identifier.wosid000387158900005-
dc.date.tcdate2019-02-01-
dc.citation.endPage2645-
dc.citation.number20-
dc.citation.startPage2636-
dc.citation.titleADVANCED HEALTHCARE MATERIALS-
dc.citation.volume5-
dc.contributor.affiliatedAuthorHwang, W-
dc.contributor.affiliatedAuthorCho, DW-
dc.identifier.scopusid2-s2.0-84981730963-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc35-
dc.description.scptc22*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusEXTRACELLULAR-MATRIX-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusGEOMETRY-
dc.subject.keywordPlusDELIVERY-
dc.subject.keywordAuthor3D cell-printing technology-
dc.subject.keywordAuthorbioink-
dc.subject.keywordAuthordecellularized extracellular matrix-
dc.subject.keywordAuthorengineered muscle constructs-
dc.subject.keywordAuthorskeletal muscles-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse