Open Access System for Information Sharing

Login Library

 

Article
Cited 235 time in webofscience Cited 276 time in scopus
Metadata Downloads

One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology SCIE SCOPUS

Title
One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology
Authors
Lee, HCho, DW
Date Issued
2016-06
Publisher
Royal Society of Chemistry
Abstract
Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bio-printing method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.
URI
https://oasis.postech.ac.kr/handle/2014.oak/37020
DOI
10.1039/c6lc00450d
ISSN
1473-0197
Article Type
Article
Citation
LAB ON A CHIP, vol. 16, no. 14, page. 2618 - 2625, 2016-06
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse