Open Access System for Information Sharing

Login Library

 

Article
Cited 93 time in webofscience Cited 105 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorSun Ig Hong-
dc.contributor.authorJongun Moon-
dc.contributor.authorSoon Ku Hong-
dc.contributor.authorKim, H.S.-
dc.date.accessioned2017-07-19T13:35:20Z-
dc.date.available2017-07-19T13:35:20Z-
dc.date.created2017-02-16-
dc.date.issued2017-01-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37266-
dc.description.abstractThe nature of obstacles to dislocation motion in CoCrFeMnNi alloy was analyzed using the thermally activated deformation analyses at low temperatures. The strong temperature dependence of yield stress and small activation volume in CoCrFeMnNi favor the dislocation glide over the obstacles with high friction stress. The activation volume of CoCrFeMnNi alloy (10-100 b(3)) in this study is much smaller than those of conventional FCC metals (10(2)similar to 10(3) b(3)), but close to those observed in BCC metals (8-100 b(3)) and HCP metals (5-100 b(3)). The increase of the activation volume with strain supports overcoming the nanoscale inhomogeneity such as co-clusters and/or short range orders as the rate controlling mechanism. The transition of dislocation structure from planar array to cell structure at 20% strain in CoCrFeMnNi reported in the literature can be attributed to the prevalent shearing of nanoscale inhomogeneity with strain.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMaterials Science and Engineering: A-
dc.titleThermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy-
dc.typeArticle-
dc.identifier.doi10.1016/J.MSEA.2016.11.078-
dc.type.rimsART-
dc.identifier.bibliographicCitationMaterials Science and Engineering: A, v.682, pp.569 - 576-
dc.identifier.wosid000393003800065-
dc.date.tcdate2018-11-01-
dc.citation.endPage576-
dc.citation.startPage569-
dc.citation.titleMaterials Science and Engineering: A-
dc.citation.volume682-
dc.contributor.affiliatedAuthorKim, H.S.-
dc.identifier.scopusid2-s2.0-84998656227-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc16-
dc.description.scptc16*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusCU-MG ALLOYS-
dc.subject.keywordPlusSOLID-SOLUTION-
dc.subject.keywordPlusINTERMEDIATE TEMPERATURES-
dc.subject.keywordPlusPLASTIC-DEFORMATION-
dc.subject.keywordPlusTENSILE PROPERTIES-
dc.subject.keywordPlusRATE SENSITIVITY-
dc.subject.keywordPlusSINGLE-PHASE-
dc.subject.keywordPlusSTRAIN-RATE-
dc.subject.keywordPlusAL-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordAuthorThermally activated processes-
dc.subject.keywordAuthorMechanical properties-
dc.subject.keywordAuthorDislocation-
dc.subject.keywordAuthorHigh entropy alloy-
dc.subject.keywordAuthorActivation volume-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse