Open Access System for Information Sharing

Login Library

 

Article
Cited 25 time in webofscience Cited 29 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorChoi, J-
dc.contributor.authorLee, J-
dc.contributor.authorBae, G-
dc.contributor.authorBarlat, F-
dc.contributor.authorLee, MG-
dc.date.accessioned2017-07-19T13:47:06Z-
dc.date.available2017-07-19T13:47:06Z-
dc.date.created2017-02-24-
dc.date.issued2016-07-
dc.identifier.issn1047-4838-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37591-
dc.description.abstractThe effect of anisotropic hardening models on springback of an S-rail part was investigated. Two advanced constitutive models based on distortional and kinematic hardening, which captured the Bauschinger effect, transient hardening, and permanent softening during strain path change, were implemented in a finite element (FE) code. In-plane compression-tension tests were performed to identify the model parameters. The springback of the S-rail after forming a 980 MPa dual-phase steel sheet sample was measured and analyzed using different hardening models. The comparison between experimental and FE results demonstrated that the advanced anisotropic hardening models, which are particularly suitable for non-proportional loading, significantly improved the springback prediction capability of an advanced high strength steel.-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfJOM-
dc.titleEvaluation of springback for DP980 S-rail part by anisotropic hardening models-
dc.typeArticle-
dc.identifier.doi10.1007/S11837-016-1924-Z-
dc.type.rimsART-
dc.identifier.bibliographicCitationJOM, v.68, no.7, pp.1850 - 1857-
dc.identifier.wosid000379027100012-
dc.date.tcdate2019-02-01-
dc.citation.endPage1857-
dc.citation.number7-
dc.citation.startPage1850-
dc.citation.titleJOM-
dc.citation.volume68-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-84964237500-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc7-
dc.description.scptc3*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRAIN CYCLIC PLASTICITY-
dc.subject.keywordPlusALUMINUM-ALLOY SHEETS-
dc.subject.keywordPlusSTRESS YIELD FUNCTION-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusPART-
dc.subject.keywordPlusEXTENSION-
dc.subject.keywordPlusBEHAVIOR-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMineralogy-
dc.relation.journalWebOfScienceCategoryMining & Mineral Processing-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMineralogy-
dc.relation.journalResearchAreaMining & Mineral Processing-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse