Open Access System for Information Sharing

Login Library

 

Article
Cited 18 time in webofscience Cited 21 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorYong Seok Kim-
dc.contributor.authorKim, WB-
dc.contributor.authorJoo, YL-
dc.date.accessioned2017-07-19T13:52:16Z-
dc.date.available2017-07-19T13:52:16Z-
dc.date.created2017-02-28-
dc.date.issued2014-06-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37770-
dc.description.abstractWe synthesized antimony (Sb)-doped tin dioxide (SnO2) nanofibers by a one-pot solution doping electrospinning process, and demonstrated that the electrical and lithium (Li)-ion conductivities of SnO2 nanofibers can substantially be increased by such a facile doping process. Owing to improved conductivities, our Sb-doped SnO2 nanofibers exhibited greatly facilitated charge transport features as battery anodes. The current study on the effect of dopant concentration revealed that 10 at.% doping produced optimized electrical and Li-ion conductivities from current-voltage characteristics and Nyquist plots. The Sb-doped SnO2 nanofibers retained over 95% Coulombic efficiency at all variable current rates from a low current rate of 100 mA g(-1) to a high current rate of 1000 mA g(-1), while pure SnO2 nanofibers had lower Coulombic efficiency values around 85% at the low current rate of 100 mA g(-1). Especially, doped nanofibers exhibited a much more stable capacity retention during 100 cycles than undoped SnO2 nanofibers. We herein confirmed that the increase in charge transport properties by the facile solution doping can directly lead to the further improved performance of Li-ion batteries with one-dimensional nanofiber electrodes.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.relation.isPartOfJournal of Materials Chemistry A-
dc.titleFurther Improvement of Battery Performance via Charge Transfer Enhanced by Solution-based Antimony Doping into Tin Dioxide Nanofibers-
dc.typeArticle-
dc.identifier.doi10.1039/C4TA00384E-
dc.type.rimsART-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.2, no.22, pp.8323 - 8327-
dc.identifier.wosid000336848000023-
dc.date.tcdate2019-02-01-
dc.citation.endPage8327-
dc.citation.number22-
dc.citation.startPage8323-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume2-
dc.contributor.affiliatedAuthorKim, WB-
dc.identifier.scopusid2-s2.0-84900802321-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc10-
dc.description.scptc7*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusSNO2 NANOWIRES-
dc.subject.keywordPlusSB-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusOXIDE-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김원배KIM, WON BAE
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse