Open Access System for Information Sharing

Login Library

 

Article
Cited 28 time in webofscience Cited 25 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKang, B-
dc.contributor.authorPark, N-
dc.contributor.authorMin, H-
dc.contributor.authorLee, J-
dc.contributor.authorJeong, H-
dc.contributor.authorBaek, S-
dc.contributor.authorCho, K-
dc.contributor.authorLee, HS-
dc.date.accessioned2017-07-19T13:54:10Z-
dc.date.available2017-07-19T13:54:10Z-
dc.date.created2017-02-28-
dc.date.issued2015-12-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37836-
dc.description.abstractPrinting technologies are instrumental to the fabrication of low-cost lightweight flexible electronic devices and circuits, which are necessary to produce wearable electronic applications. However, attaining fully printed devices on flexible films over large areas has typically been a challenge. Here, the fabrication of fully drawn all-organic field-effect transistor (FET) arrays on mechanically flexible substrates using a capillary-pen printing method is demonstrated. A highly crystalline organic semiconductor (active layer), a smooth insulating polymer (dielectric layer), and a conducting polymer (source, drain, and gate electrodes) are deposited from solution sequentially. The bottom-gate bottom-contact FETs drawn onto flexible substrates exhibit superior field-effect mobilities of up to 0.54 cm(2) V-1 s(-1), good reproducibility, operational stability, and mechanical bendability. Furthermore, to emphasize the methodological advantages of the capillary-pen printing, an organic FET (OFET) array on a curvilinear substrate of a plastic straw and the repairing concept for a broken electrical circuit are demonstrated. These results indicate that capillary pen printing shows promise as a manufacturing technique for a wide range of large-area electronic applications.-
dc.languageEnglish-
dc.publisherWiley-
dc.relation.isPartOfADVANCED ELECTRONIC MATERIALS-
dc.titleFully-Drawn All-Organic Flexible Transistors Prepared by Capillary Pen Printing on Flexible Planar and Curvilinear Substrates-
dc.typeArticle-
dc.identifier.doi10.1002/AELM.201500301-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED ELECTRONIC MATERIALS, v.1, no.12, pp.1500301-
dc.identifier.wosid000368916500016-
dc.date.tcdate2019-02-01-
dc.citation.number12-
dc.citation.startPage1500301-
dc.citation.titleADVANCED ELECTRONIC MATERIALS-
dc.citation.volume1-
dc.contributor.affiliatedAuthorCho, K-
dc.identifier.scopusid2-s2.0-84976611532-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc10-
dc.description.scptc8*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusSELF-ORGANIZATION-
dc.subject.keywordPlusGATE DIELECTRICS-
dc.subject.keywordPlusSOLUBLE PENTACENE-
dc.subject.keywordPlusCHARGE-TRANSPORT-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusSURFACES-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조길원CHO, KIL WON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse