Open Access System for Information Sharing

Login Library

 

Article
Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorGim, Y-
dc.contributor.authorKang, B-
dc.contributor.authorKim, B-
dc.contributor.authorKim, SG-
dc.contributor.authorLee, JH-
dc.contributor.authorCho, K-
dc.contributor.authorKu, BC-
dc.contributor.authorCho, JH-
dc.date.accessioned2017-07-19T13:54:24Z-
dc.date.available2017-07-19T13:54:24Z-
dc.date.created2017-02-28-
dc.date.issued2015-07-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/37845-
dc.description.abstractAtomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm(2) V-1 s(-1) and electron mobility of 0.17 cm(2) V-1 s(-1) in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.relation.isPartOfNANOSCALE-
dc.subjectSELF-ASSEMBLED MONOLAYERS-
dc.subjectREDUCED GRAPHENE OXIDE-
dc.subjectFILM TRANSISTORS-
dc.subjectHIGH-PERFORMANCE-
dc.subjectELECTRICAL CHARACTERISTICS-
dc.subjectSOURCE/DRAIN ELECTRODES-
dc.subjectCHEMICAL-REDUCTION-
dc.subjectPENTACENE FILMS-
dc.subjectGRAPHITE OXIDE-
dc.subjectSURFACE-
dc.titleAtomically-thin molecular layers for electrode modification of organic transistors-
dc.typeArticle-
dc.identifier.doi10.1039/C5NR03307A-
dc.type.rimsART-
dc.identifier.bibliographicCitationNANOSCALE, v.7, no.33, pp.14100 - 14108-
dc.identifier.wosid000359546900035-
dc.date.tcdate2019-02-01-
dc.citation.endPage14108-
dc.citation.number33-
dc.citation.startPage14100-
dc.citation.titleNANOSCALE-
dc.citation.volume7-
dc.contributor.affiliatedAuthorCho, K-
dc.identifier.scopusid2-s2.0-84939157435-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc3-
dc.description.scptc3*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusSELF-ASSEMBLED MONOLAYERS-
dc.subject.keywordPlusREDUCED GRAPHENE OXIDE-
dc.subject.keywordPlusFILM TRANSISTORS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusELECTRICAL CHARACTERISTICS-
dc.subject.keywordPlusSOURCE/DRAIN ELECTRODES-
dc.subject.keywordPlusCHEMICAL-REDUCTION-
dc.subject.keywordPlusPENTACENE FILMS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusTRANSPARENT-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조길원CHO, KIL WON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse