Open Access System for Information Sharing

Login Library

 

Article
Cited 45 time in webofscience Cited 47 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHan, Hyeon-
dc.contributor.authorKim, Donghoon-
dc.contributor.authorChu, Kanghyun-
dc.contributor.authorPark, Jucheol-
dc.contributor.authorNam, Sang Yeol-
dc.contributor.authorHeo Seungyang-
dc.contributor.authorYang, Chan-Ho-
dc.contributor.authorJANG, HYUN MYUNG-
dc.date.accessioned2018-05-02T06:19:33Z-
dc.date.available2018-05-02T06:19:33Z-
dc.date.created2018-01-08-
dc.date.issued2018-01-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/40946-
dc.description.abstractFerroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼104 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (Eg). Here, we present a promising FPV based on hexagonal YbFeO3 (h-YbFO) thin-film heterostructure by exploiting its narrow Eg. More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al2O3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces Eg substantially and enhances the strength of d–d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS Applied Materials & Interfaces-
dc.subjectDensity functional theory-
dc.subjectEnergy gap-
dc.subjectFerrites-
dc.subjectFerroelectric films-
dc.subjectFerroelectricity-
dc.subjectHeterojunctions-
dc.subjectIron compounds-
dc.subjectOptoelectronic devices-
dc.subjectPhotons-
dc.subjectSubstrates-
dc.subjectThin films-
dc.subjectYtterbium compounds-
dc.subjectDensity functional theory studies-
dc.subjectEnhanced polarization-
dc.subjectHeterojunction devices-
dc.subjectHexagonal ferrite-
dc.subjectPhoto-voltaic efficiency-
dc.subjectPhotovoltaic response-
dc.subjectSwitchable-
dc.subjectThin film photovoltaics-
dc.subjectPhotovoltaic effects-
dc.titleEnhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.7b16700-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.10, no.2, pp.1846 - 1853-
dc.identifier.wosid000423140400043-
dc.date.tcdate2019-02-01-
dc.citation.endPage1853-
dc.citation.number2-
dc.citation.startPage1846-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume10-
dc.contributor.affiliatedAuthorHan, Hyeon-
dc.contributor.affiliatedAuthorKim, Donghoon-
dc.contributor.affiliatedAuthorJANG, HYUN MYUNG-
dc.identifier.scopusid2-s2.0-85040654097-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.type.docTypeArticle-
dc.subject.keywordPlusPERIPHERAL ARTERIAL-DISEASE-
dc.subject.keywordPlusHEPATOCYTE GROWTH-FACTOR-
dc.subject.keywordPlusGENE-THERAPY-
dc.subject.keywordPlusIN-SITU-
dc.subject.keywordPlusANGIOGENESIS-
dc.subject.keywordPlusEPIDEMIOLOGY-
dc.subject.keywordPlusLIMB-
dc.subject.keywordPlusMET-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장현명JANG, HYUN MYUNG
Div of Advanced Materials Science
Read more

Views & Downloads

Browse