Open Access System for Information Sharing

Login Library

 

Article
Cited 23 time in webofscience Cited 31 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorYim, Dami-
dc.contributor.authorMin Ji Jang-
dc.contributor.authorJae Wung Bae-
dc.contributor.authorMoon, Jongun-
dc.contributor.authorChul-Hee Lee-
dc.contributor.authorSoon-Jik Hong-
dc.contributor.authorSun Ig Hong-
dc.contributor.authorKIM, HYOUNG SEOP-
dc.date.accessioned2018-05-02T06:20:23Z-
dc.date.available2018-05-02T06:20:23Z-
dc.date.created2018-01-18-
dc.date.issued2017-06-
dc.identifier.issn0254-0584-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/40966-
dc.description.abstractIn this work, compaction behavior of CoCrFeMnNi high-entropy alloy powders with various particle sizes and size distributions, produced by water atomization, was investigated experimentally and theoretically. Theoretical modeling was employed using a pressure-dependent yield function in associated with a phenomenological constitutive model. Results for the quantitative densification behaviors from the experimental and theoretical analyses are in good agreement. We found that the size and size distribution of the powder particles are important factors in the tap density as with conventional powder compaction. The compact density of large powder particles with coarse dendrite arm spacing is high due to low deformation resistance and low strain hardening (i.e., low evolution of dislocation density). (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMATERIALS CHEMISTRY AND PHYSICS-
dc.subjectDEFORMATION-BEHAVIOR-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectCRYSTAL-STRUCTURES-
dc.subjectMICROSTRUCTURE-
dc.subjectDENSIFICATION-
dc.subjectTEMPERATURES-
dc.subjectMETALLURGY-
dc.subjectELEMENTS-
dc.titleCompaction Behavior of Water-Atomized CoCrFeMnNi High-Entropy Alloy Powders-
dc.typeArticle-
dc.identifier.doi10.1016/j.matchemphys.2017.06.013-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS CHEMISTRY AND PHYSICS, v.210, pp.95 - 102-
dc.identifier.wosid000429762200014-
dc.date.tcdate2019-02-01-
dc.citation.endPage102-
dc.citation.startPage95-
dc.citation.titleMATERIALS CHEMISTRY AND PHYSICS-
dc.citation.volume210-
dc.contributor.affiliatedAuthorYim, Dami-
dc.contributor.affiliatedAuthorMoon, Jongun-
dc.contributor.affiliatedAuthorKIM, HYOUNG SEOP-
dc.identifier.scopusid2-s2.0-85020283654-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc4-
dc.type.docTypeArticle-
dc.subject.keywordPlusDEFORMATION-BEHAVIOR-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusCRYSTAL-STRUCTURES-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusDENSIFICATION-
dc.subject.keywordPlusTEMPERATURES-
dc.subject.keywordPlusMETALLURGY-
dc.subject.keywordPlusELEMENTS-
dc.subject.keywordAuthorHigh entropy alloy-
dc.subject.keywordAuthorPowder metallurgy-
dc.subject.keywordAuthorCompaction-
dc.subject.keywordAuthorDislocation density-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse