Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 35 time in scopus
Metadata Downloads

Super-resolution visible photoactivated atomic force microscopy SCIE SCOPUS

Title
Super-resolution visible photoactivated atomic force microscopy
Authors
LEE, SEUNGHYUNKwon, OwoongJEON, MANSIKSONG, JAEJUNGSEUNGJUN, SHINHYEMI, KIMJO, MIN GUKRIM, TAIUKDOH, JUNSANGKIM, SUNGJEESON, JUNWOOKim, YunseokKIM, CHULHONG
Date Issued
2017-11
Publisher
CHINESE ACAD SCIENCES
Abstract
Imaging the intrinsic optical absorption properties of nanomaterials with optical microscopy (OM) is hindered by the optical diffraction limit and intrinsically poor sensitivity. Thus, expensive and destructive electron microscopy (EM) has been commonly used to examine the morphologies of nanostructures. Further, while nanoscale fluorescence OM has become crucial for investigating the morphologies and functions of intracellular specimens, this modality is not suitable for imaging optical absorption and requires the use of possibly undesirable exogenous fluorescent molecules for biological samples. Here we demonstrate super-resolution visible photoactivated atomic force microscopy (pAFM), which can sense intrinsic optical absorption with similar to 8 nm resolution. Thus, the resolution can be improved down to similar to 8 nm. This system can detect not only the first harmonic response, but also the higher harmonic response using the nonlinear effect. The thermoelastic effects induced by pulsed laser irradiation allow us to obtain visible pAFM images of single gold nanospheres, various nanowires, and biological cells, all with nanoscale resolution. Unlike expensive EM, the visible pAFM system can be simply implemented by adding an optical excitation sub-system to a commercial atomic force microscope.
Keywords
IN-VIVO; PHOTOACOUSTIC MICROSCOPY; NANOPARTICLES; TOMOGRAPHY; GROWTH; CELLS; LIMIT; Arabidopsis imaging; gold nanoparticle imaging; melanoma cell imaging; nanowire imaging; super-resolution optical microscopy
URI
https://oasis.postech.ac.kr/handle/2014.oak/41208
DOI
10.1038/lsa.2017.80
ISSN
2047-7538
Article Type
Article
Citation
Light-Science & Applications, vol. 6, 2017-11
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse