Open Access System for Information Sharing

Login Library

 

Article
Cited 65 time in webofscience Cited 68 time in scopus
Metadata Downloads

Diatom-Inspired Silica Nanostructure Coatings with Controllable Microroughness Using an Engineered Mussel Protein Glue to Accelerate Bone Growth on Titanium-Based Implants SCIE SCOPUS

Title
Diatom-Inspired Silica Nanostructure Coatings with Controllable Microroughness Using an Engineered Mussel Protein Glue to Accelerate Bone Growth on Titanium-Based Implants
Authors
JO, YUNKEECHOI, BONG HYUKKIM, CHANG SUPCHA, HYUNG JOON
Date Issued
2017-12
Publisher
WILEY-V C H VERLAG GMBH
Abstract
Silica nanoparticles (SiNPs) have been utilized to construct bioactive nanostructures comprising surface topographic features and bioactivity that enhances the activity of bone cells onto titanium‐based implants. However, there have been no previous attempts to create microrough surfaces based on SiNP nanostructures even though microroughness is established as a characteristic that provides beneficial effects in improving the biomechanical interlocking of titanium implants. Herein, a protein‐based SiNP coating is proposed as an osteopromotive surface functionalization approach to create microroughness on titanium implant surfaces. A bioengineered recombinant mussel adhesive protein fused with a silica‐precipitating R5 peptide (R5‐MAP) enables direct control of the microroughness of the surface through the multilayer assembly of SiNP nanostructures under mild conditions. The assembled SiNP nanostructure significantly enhances the in vitro osteogenic cellular behaviors of preosteoblasts in a roughness‐dependent manner and promotes the in vivo bone tissue formation on a titanium implant within a calvarial defect site. Thus, the R5‐MAP‐based SiNP nanostructure assembly could be practically applied to accelerate bone‐tissue growth to improve the stability and prolong the lifetime of medical implantable devices.
URI
https://oasis.postech.ac.kr/handle/2014.oak/41360
DOI
10.1002/adma.201704906
ISSN
0935-9648
Article Type
Article
Citation
ADVANCED MATERIALS, vol. 29, no. 46, page. 1704906, 2017-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

차형준CHA, HYUNG JOON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse