Open Access System for Information Sharing

Login Library

 

Article
Cited 38 time in webofscience Cited 47 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLee, J.-Y.-
dc.contributor.authorLee, M.-G.-
dc.contributor.authorBarlat, F.-
dc.contributor.authorBae, G.-
dc.date.accessioned2018-06-15T05:36:04Z-
dc.date.available2018-06-15T05:36:04Z-
dc.date.created2017-12-21-
dc.date.issued2017-06-
dc.identifier.issn0749-6419-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/50644-
dc.description.abstractA multi-surface approach is suggested to describe nonlinear and hysteretic unloading-reloading behaviors of sheet metals, adopting the concept of multiple yield surfaces in the Mr?z model. This approach divides the elastic domain into many fields that have different values of elastic modulus, resulting in a piecewise linear, hysteretic unloading-reloading stress-strain curve. Because this approach simply divides the elastic domain, it can be used in conjunction with any phenomenological plasticity models. The proposed model was implemented into a commercial finite element code and applied to springback simulations and stiffness analyses, demonstrating that its computational efficiency is comparable (1.66 times) to that required for linear elasticity and its accuracy is as good as the nonlinear elasticity model. It was further verified that the proposed model provides a stable solution even when the numerical simulation involves small stress oscillations during unloading or reloading. ? 2017 Elsevier Ltd.-
dc.languageEnglish-
dc.publisherElsevier Ltd-
dc.relation.isPartOfInternational Journal of Plasticity-
dc.subjectComputational efficiency-
dc.subjectElastic moduli-
dc.subjectElasticity-
dc.subjectHigh strength steel-
dc.subjectHysteresis-
dc.subjectPiecewise linear techniques-
dc.subjectStiffness-
dc.subjectStress-strain curves-
dc.subjectUnloading-
dc.subjectAdvanced high strength steel-
dc.subjectCommercial finite element codes-
dc.subjectModulus reduction-
dc.subjectNonlinear elasticity-
dc.subjectPhenomenological plasticity-
dc.subjectPiecewise linear approximations-
dc.subjectSpringback prediction-
dc.subjectSpringback simulations-
dc.subjectFinite element method-
dc.titlePiecewise linear approximation of nonlinear unloading-reloading behaviors using a multi-surface approach-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijplas.2017.02.004-
dc.type.rimsART-
dc.identifier.bibliographicCitationInternational Journal of Plasticity, v.93, pp.112 - 136-
dc.identifier.wosid000402213200007-
dc.date.tcdate2019-02-01-
dc.citation.endPage136-
dc.citation.startPage112-
dc.citation.titleInternational Journal of Plasticity-
dc.citation.volume93-
dc.contributor.affiliatedAuthorBarlat, F.-
dc.identifier.scopusid2-s2.0-85014492082-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc5-
dc.type.docTypeArticle-
dc.subject.keywordPlusANISOTROPIC YIELD FUNCTIONS-
dc.subject.keywordPlusSTRENGTH STEEL SHEETS-
dc.subject.keywordPlusCYCLIC PLASTICITY-
dc.subject.keywordPlusYOUNGS MODULUS-
dc.subject.keywordPlusALLOY SHEETS-
dc.subject.keywordPlusLARGE-STRAIN-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusCONSISTENCY-
dc.subject.keywordPlusSPRINGBACK-
dc.subject.keywordAuthorElastic modulus reduction-
dc.subject.keywordAuthorNonlinear elasticity-
dc.subject.keywordAuthorSpringback prediction-
dc.subject.keywordAuthorPanel stiffness-
dc.subject.keywordAuthorAdvanced high strength steel-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMechanics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse