Open Access System for Information Sharing

Login Library

 

Article
Cited 53 time in webofscience Cited 63 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorNoh, Myung Hyun-
dc.contributor.authorLim, Hyun Gyu-
dc.contributor.authorPark, Sunghoon-
dc.contributor.authorSeo, Sang Woo-
dc.contributor.authorJung, Gyoo Yeol-
dc.date.accessioned2018-06-15T05:49:11Z-
dc.date.available2018-06-15T05:49:11Z-
dc.date.created2017-10-10-
dc.date.issued2017-09-
dc.identifier.issn1096-7176-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/50877-
dc.description.abstractMicrobial production of 5-aminolevulinic acid (ALA) has received much attention because of its potential in clinical applications. Overexpression along with the deciphering of regulation of the related enzymes and an analogue transporter yielded remarkable achievements in ALA production. Nonetheless, there is significant room for carbon flux optimization to enhance ALA production. The aim of this study was precise carbon flux optimization for high ALA production in Escherichia coli expressing the ALA biosynthetic pathway. Initially, genes hemA and hemL were overexpressed with strong promoters and synthetic 5'-untranslated regions (5'-UTRs). Then, the tricarboxylic acid (TCA) cycle was blocked to force carbon flux toward the ALA production pathway by deletion of sucA. Although the resulting strain showed a severe metabolic imbalance and low ALA production, further precise tuning of carbon flux to the glyoxylate cycle by varying the transcriptional strength of aceA led to substantially improved cell growth and ALA production. Thus, this precise tuning of the glyoxylate cycle in a quantitative manner should also enable efficient production of other value-added products derived from the TCA cycle.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.relation.isPartOfMETABOLIC ENGINEERING-
dc.subjectDELTA-AMINOLEVULINIC-ACID-
dc.subjectHEME-BIOSYNTHESIS-
dc.subjectITACONIC ACID-
dc.subjectSALMONELLA-TYPHIMURIUM-
dc.subjectCOMBINATORIAL DESIGN-
dc.subjectHIGH-YIELD-
dc.subjectMETABOLISM-
dc.subjectINITIATION-
dc.subjectEXPRESSION-
dc.subjectPATHWAY-
dc.titlePrecise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli-
dc.typeArticle-
dc.identifier.doi10.1016/j.ymben.2017.07.006-
dc.type.rimsART-
dc.identifier.bibliographicCitationMETABOLIC ENGINEERING, v.43, pp.1 - 8-
dc.identifier.wosid000410479600001-
dc.date.tcdate2019-02-01-
dc.citation.endPage8-
dc.citation.startPage1-
dc.citation.titleMETABOLIC ENGINEERING-
dc.citation.volume43-
dc.contributor.affiliatedAuthorNoh, Myung Hyun-
dc.contributor.affiliatedAuthorJung, Gyoo Yeol-
dc.identifier.scopusid2-s2.0-85025583264-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc10-
dc.type.docTypeArticle-
dc.subject.keywordPlusDELTA-AMINOLEVULINIC-ACID-
dc.subject.keywordPlusHEME-BIOSYNTHESIS-
dc.subject.keywordPlusITACONIC ACID-
dc.subject.keywordPlusSALMONELLA-TYPHIMURIUM-
dc.subject.keywordPlusCOMBINATORIAL DESIGN-
dc.subject.keywordPlusHIGH-YIELD-
dc.subject.keywordPlusMETABOLISM-
dc.subject.keywordPlusINITIATION-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusPATHWAY-
dc.subject.keywordAuthor5-Aminolevulinic acid-
dc.subject.keywordAuthorGlyoxylate cycle-
dc.subject.keywordAuthorMetabolic engineering-
dc.subject.keywordAuthorSynthetic biology-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

정규열JUNG, GYOO YEOL
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse