Open Access System for Information Sharing

Login Library

 

Article
Cited 94 time in webofscience Cited 95 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorMIN, HO PARK-
dc.contributor.authorJeong, S.-H.-
dc.contributor.authorSeo, H.-K.-
dc.contributor.authorCHRISTOPH, WOLF-
dc.contributor.authorKim, Y.-H.-
dc.contributor.authorKim, H.-
dc.contributor.authorByun, J.-
dc.contributor.authorKim, J.S.-
dc.contributor.authorCho, H.-
dc.contributor.authorLEE, TAE WOO-
dc.date.accessioned2018-07-16T09:41:58Z-
dc.date.available2018-07-16T09:41:58Z-
dc.date.created2017-12-21-
dc.date.issued2017-12-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/91972-
dc.description.abstractOrganic-inorganic halide perovskite light emitting diode (PeLED) as a narrow band emitter is an emerging research field. To overcome limited electroluminescence efficiency of PeLEDs, trap-assisted non-radiative recombination in polycrystalline perovskite films should be reduced and the electron-hole balance in the PeLEDs must be improved. In this work, we investigated a practical way to effectively overcome above-mentioned issues by unravelling additive-based nanocrystal pinning (A-NCP) process using the carefully controlled electron transporting organic material solutions diluted in a volatile non-polar solvent. We found that without affecting the intrinsic crystal structure, A-NCP improved the radiative recombination rate by reducing effective defect density at grain boundaries due to the defect healing effect. Moreover, it induced the improved electron-hole balance in the dominantly p-type CH3NH3PbBr3 based PeLEDs, leading to the highest efficiency of 8.79% ever reported to date among organic-inorganic halide perovskite-based green PeLEDs. Therefore, our work gives the effective approaches for efficient PeLEDs from the investigations of the role of A-NCP incorporating a tiny amount of an electron transporting molecule as an additive to increase radiative recombination rate of polycrystalline perovskite films. ? 2017 Elsevier Ltd-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.relation.isPartOfNano Energy-
dc.titleUnravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2017.10.012-
dc.type.rimsART-
dc.identifier.bibliographicCitationNano Energy, v.42, pp.157 - 165-
dc.identifier.wosid000418344200019-
dc.date.tcdate2019-02-01-
dc.citation.endPage165-
dc.citation.startPage157-
dc.citation.titleNano Energy-
dc.citation.volume42-
dc.contributor.affiliatedAuthorMIN, HO PARK-
dc.contributor.affiliatedAuthorCHRISTOPH, WOLF-
dc.contributor.affiliatedAuthorKim, H.-
dc.contributor.affiliatedAuthorLEE, TAE WOO-
dc.identifier.scopusid2-s2.0-85032890167-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc10-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYBRID PEROVSKITE-
dc.subject.keywordPlusSINGLE-CRYSTALS-
dc.subject.keywordPlusELECTRON-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusLENGTHS-
dc.subject.keywordPlusELECTROLUMINESCENCE-
dc.subject.keywordPlusPHOTOLUMINESCENCE-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusCH3NH3PBI3-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorOrganic-inorganic halide perovskite-
dc.subject.keywordAuthorPerovskite light emitting diodes-
dc.subject.keywordAuthorPolycrystalline perovskite film-
dc.subject.keywordAuthorAdditive-
dc.subject.keywordAuthorElectron injection efficiency-
dc.subject.keywordAuthorDefect healing effect-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이태우LEE, TAE WOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse