Open Access System for Information Sharing

Login Library

 

Article
Cited 32 time in webofscience Cited 33 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLim, E.-
dc.contributor.authorLim, W.-G.-
dc.contributor.authorJo, C.-
dc.contributor.authorChun, J.-
dc.contributor.authorKim, M.-H.-
dc.contributor.authorRoh, K.C.-
dc.contributor.authorLee, J.-
dc.date.accessioned2018-07-16T09:43:40Z-
dc.date.available2018-07-16T09:43:40Z-
dc.date.created2017-12-21-
dc.date.issued2017-10-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/91997-
dc.description.abstractA Li-ion hybrid supercapacitor (Li-HSC) delivering high energy within seconds (excellent rate performance) with stable cycle life is one of the most highly attractive energy storage devices. However, the limited anode materials for Li-HSC systems lead to stagnation and restrict the development of high-performance Li-HSCs. To tackle this problem, a facile synthetic route to Li3VO4@carbon core-shell nanoparticles (Li3VO4@C NPs), a promising high-power anode for Li-HSCs, is reported. The synthesized Li3VO4@C NPs show a high specific capacity of ��400 mA h g-1 at the current density of 0.02 A g-1 in the potential range from 0.2 to 3.0 V (vs. Li/Li+), with rapid charge/discharge characteristics (��110 mA h g-1 at 10 A g-1). By various electrochemical analyses, it was demonstrated that the excellent electrochemical properties of Li3VO4@C NPs stem from their improved pseudocapacitive behavior and their low internal resistance, which are mainly due to the synergistic effects of (i) a well-designed electrode morphology achieved by nano-engineering and (ii) the structural merits of a core-shell architecture. In addition, the Li-HSC using the Li3VO4@C NP anode and activated carbon (AC) cathode provides ��190 W h kg-1 energy and ��18 500 W kg-1 power density, with long-term cycle stability in the potential range from 0.0 to 4.3 V. ? 2017 The Royal Society of Chemistry.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.relation.isPartOfJournal of Materials Chemistry A-
dc.subjectActivated carbon-
dc.subjectAnodes-
dc.subjectElectrodes-
dc.subjectHybrid materials-
dc.subjectNanoparticles-
dc.subjectShells (structures)-
dc.subjectSupercapacitor-
dc.subjectCore-shell nanoparticles-
dc.subjectElectrochemical analysis-
dc.subjectElectrode morphology-
dc.subjectHigh specific capacity-
dc.subjectHybrid supercapacitors-
dc.subjectInternal resistance-
dc.subjectPseudocapacitive behavior-
dc.subjectSynergistic effect-
dc.subjectLithium-
dc.titleRational design of Li3VO4@carbon core-shell nanoparticles as Li-ion hybrid supercapacitor anode materials-
dc.typeArticle-
dc.identifier.doi10.1039/c7ta05863b-
dc.type.rimsART-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.5, no.39, pp.20969 - 20977-
dc.identifier.wosid000412800300050-
dc.date.tcdate2019-02-01-
dc.citation.endPage20977-
dc.citation.number39-
dc.citation.startPage20969-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume5-
dc.contributor.affiliatedAuthorLee, J.-
dc.identifier.scopusid2-s2.0-85031103921-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc5-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL ENERGY-STORAGE-
dc.subject.keywordPlusGRAPHENE NANOSHEETS-
dc.subject.keywordPlusACTIVATED CARBON-
dc.subject.keywordPlusLITHIUM STORAGE-
dc.subject.keywordPlusINSERTION ANODE-
dc.subject.keywordPlusHOLLOW SPHERES-
dc.subject.keywordPlusBATTERY ANODES-
dc.subject.keywordPlusPOWER-DENSITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCAPACITORS-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이진우LEE, JIN WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse