Open Access System for Information Sharing

Login Library

 

Article
Cited 40 time in webofscience Cited 43 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorChoi, Won Seok-
dc.contributor.authorSandloebes, Stefanie-
dc.contributor.authorMalyar, Nataliya V.-
dc.contributor.authorKirchlechner, Christoph-
dc.contributor.authorKorte-Kerzel, Sandra-
dc.contributor.authorDehm, Gerhard-
dc.contributor.authorDe Cooman, Bruno C.-
dc.contributor.authorRaabe, Dierk-
dc.date.accessioned2018-07-17T10:45:28Z-
dc.date.available2018-07-17T10:45:28Z-
dc.date.created2017-09-14-
dc.date.issued2017-06-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/92098-
dc.description.abstractDeformation twinning contributes to a high work-hardening rate through modification of the dislocation structure and a dynamic Hall-Petch effect in polycrystalline steel. Due to the well-defined compression axis and limited deformation volume of micro-pillars, micro-compression testing is a suitable method to investigate the mechanisms of deformation twinning and the interactions of dislocations with twin boundaries. The material investigated is an austenitic Fe-22 wt%Mn-0.6 wt%C twining-induced plasticity steel. Micro-pillars oriented preferentially for deformation twinning and dislocation glide are compressed and the activated deformation systems are characterized. We observe that deformation twinning induces higher flow stresses and a more unstable work-hardening behavior than dislocation glide, while dislocation glide dominated deformation results in a stable work-hardening behavior. The higher flow stresses and unstable work-hardening behavior in micro-pillars oriented for deformation twinning are assumed to be caused by the activation of secondary slip systems and accumulated plastic deformation. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.relation.isPartOfACTA MATERIALIA-
dc.subjectNANOCRYSTALLINE FCC METALS-
dc.subjectSINGLE-CRYSTALS-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectNICKEL MICROCRYSTALS-
dc.subjectCOMPRESSION PILLARS-
dc.subjectDEFORMATION TWINS-
dc.subjectFLOW-STRESS-
dc.subjectSIZE-
dc.subjectSTEEL-
dc.subjectSTRENGTH-
dc.titleDislocation interaction and twinning-induced plasticity in face-centered cubic Fe-Mn-C micro-pillars-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2017.04.043-
dc.type.rimsART-
dc.identifier.bibliographicCitationACTA MATERIALIA, v.132, pp.162 - 173-
dc.identifier.wosid000405881500015-
dc.date.tcdate2019-02-01-
dc.citation.endPage173-
dc.citation.startPage162-
dc.citation.titleACTA MATERIALIA-
dc.citation.volume132-
dc.contributor.affiliatedAuthorDe Cooman, Bruno C.-
dc.identifier.scopusid2-s2.0-85018324413-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc5-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOCRYSTALLINE FCC METALS-
dc.subject.keywordPlusSINGLE-CRYSTALS-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusNICKEL MICROCRYSTALS-
dc.subject.keywordPlusCOMPRESSION PILLARS-
dc.subject.keywordPlusDEFORMATION TWINS-
dc.subject.keywordPlusFLOW-STRESS-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusSTEEL-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordAuthorTWIP steel-
dc.subject.keywordAuthorMicro-pillar compression-
dc.subject.keywordAuthorTransmission electron microscopy-
dc.subject.keywordAuthorDislocation interaction-
dc.subject.keywordAuthorDeformation twinning-
dc.subject.keywordAuthorWork-hardening-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

DE COOMANBRUNO CDE, COOMAN BRUNO C
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse