Open Access System for Information Sharing

Login Library

 

Article
Cited 238 time in webofscience Cited 263 time in scopus
Metadata Downloads

Construction of an in vitro bistable circuit from synthetic transcriptional switches SCIE SCOPUS

Title
Construction of an in vitro bistable circuit from synthetic transcriptional switches
Authors
KIM, JONGMINWhite, Kristin SWINFREE, ERIK
Date Issued
2006-12
Publisher
NATURE PUBLISHING GROUP
Abstract
Information processing using biochemical circuits is essential for survival and reproduction of natural organisms. As stripped-down analogs of genetic regulatory networks in cells, we engineered artificial transcriptional networks consisting of synthetic DNA switches, regulated by RNA signals acting as transcription repressors, and two enzymes, bacteriophage T7 RNA polymerase and Escherichia coli ribonuclease H. The synthetic switch design is modular with programmable connectivity and allows dynamic control of RNA signals through enzyme-mediated production and degradation. The switches support sharp and adjustable thresholds using a competitive hybridization mechanism, allowing arbitrary analog or digital circuits to be created in principle. As an example, we constructed an in vitro bistable memory by wiring together two synthetic switches and performed a systematic quantitative characterization. Good agreement between experimental data and a simple mathematical model was obtained for switch input/output functions, phase plane trajectories, and the bifurcation diagram for bistability. Construction of larger synthetic circuits provides a unique opportunity for evaluating model inference, prediction, and design of complex biochemical systems and could be used to control nanoscale devices and artificial cells.
URI
https://oasis.postech.ac.kr/handle/2014.oak/92176
DOI
10.1038/msb4100099
ISSN
1744-4292
Article Type
Article
Citation
Molecular Systems Biology, vol. 2, page. 68, 2006-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse