Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structural-rheological study of additive effects on shear thinning behavior of CaO-SiO2-CaF2 based mold flux for a continuous steel caster

Title
Structural-rheological study of additive effects on shear thinning behavior of CaO-SiO2-CaF2 based mold flux for a continuous steel caster
Authors
신승호
Date Issued
2016
Publisher
포항공과대학교
Abstract
회전식점도계를 이용하여 몰드플럭스의 점도를 회전수변화를 변수로 실험한결과 1350oC 에서의 몰드플럭스는 non-Newtonian 거동의 전단박화 (shear thinning) 현상을 보이고 있다. 전단박화 현상을 보이는 점도의 평균점도를 염기도별로 측정한 결과 0.8의 염기도를 갖는 몰드플럭스는 0.472 pa.s, 1.0 염기도의 몰드플럭스는 0.267 pa.s, 1.2 염기도의 몰드플럭스는 0.227pa.s 마지막으로 1.4 염기도의 몰드플럭스는 0.181 pa.s 를 보였다. 전단박화 현상은 염기도에 따라 그정도가 달라지는 경향을 보이고 있으며, 전단박화 현상을 정량적으로 평가하기 위하여 Oswald De Waalse 의 power law 모델을 이용하여 평가하였다. Newtonian 거동의 경우 flow behavior index 라 불리는 n 값이 1 이며, 전단박화 현상의 경우 n 값이 0 과 1 사이에 존재하게 된다. 또한 전단경화 의 경우 n 값이 1 이상을 보이게 된다. 전단박화 현상이든 전단박화 현상이든 flow behavior index 가 1 에서 멀어지면 멀어질수록 더욱더 강력한 non-Newtonian 거동을 갖는다. 상용몰드플럭스 B (염기도 0.94) 에 6 - 28.1 퍼센트의 넓은 범위의 borate를 첨가했을 시, 28.1 퍼센트의 borate가 첨가되었을 때 가장 강력한 전단박화 현상을 보였다. 또한 1퍼센트의 silicon nitride 가 첨가되었을 때 강력한 전단박화 현상을 보였다. 보레이트 28.1 퍼센트 첨가시, 첨가되지 않은 상용 몰드플럭스와 비교하여 강력한 전단 박화 현상을 보였다. 보레이트 첨가시 flow behavior index 는 0.841 로 첨가되지 않은것보다 다소 강력한 것으로 나타났다. 위 그림5에서 보듯이, 보레이트의 첨가시, 낮은 전단속도에서 큰 점도변화 없이 높은전단속도에서 비교적 큰 점도감소를 이끌어 냄으로서 강력한 전단박화 현상을 이루었다. 이와는 대조적으로 silicon nitride 는 높은 전단속도에서의 큰 점도변화없이 낮은 전단속도에서 비교적 큰 점도증가를 이끌어 냄으로서 강력한 전단박화 현상을 이끌어 내었으며, Flow behavior를 비교한결과, silicon nitride 의첨가가 가장 강력한 전단박화 현상을 보이는 것으로 나타났다. 상용몰드플럭스의 점탄성과 이에대한 borate 와 silicon nitride 의 효과를 이해하기위하여 라만분광분석과 XPS 분석을 진행하였다. 28.1 퍼센트의 borate중 약 7퍼센트의 borate 는 알칼리 옥사이드 (Na2O) 와 결합하여 3차원적인 tetrahedral 구조를 형성하고 silicate 의 non-bridging 산소와 결합하여 중합도를 증가시킨다. 대략 15 퍼센트의 borate 미만을 첨가한 경우, borate 는 silicate 의 구조안으로 결합되지않고 boroxol ring 의 형태로 스스로 존재하게된다. 그리고 15 퍼센트 이상의 borate 가 첨가된 경우, 2차원적인 triangular 구조의 borate 가 silicate network 구조속의 silicate 와 치환되었으며, 28.1 퍼센트의 borate 가 첨가된 경우 그 치환율은 더 증가하였다. 1개의 silicon nitride 분자는 최대 9개의 non-bridging 산소와 연결될 수 있어, 소량으로도 물성에 큰변화를 줄 수 있는 물질로서 널리 알려져 있다. XPS 분석을 통해 얻은결과 본연구의 샘플도 N1, N2, N3 의 형태로 silicon nitride를 포함하고 있으며 그 도식적인 구조는 위 그림 7과 같다. 분광분석결과 N2, N3, N1 의 순으로 silicon nitride 가 silicate network 구조 속에 첨가된 것으로 분석되었다. 전단속도를 steday 하게 변형시키며 점도를 측정한결과 28.1 퍼센트의 borate 는 낮은 전단속도에서 큰 점도변화 없이 높은 전단속도에서 비교적 큰 점도감소를 통하여 강력한 전단박화 현상을 야기 시켰다. 이러한 결과는 dynamic 점도측정법을 통해서도 다시한번더 증명되었다. dynamic 점도 측정결과, 28.1 퍼센트의 borate 첨가는 첨가제가 없는 사용몰드플럭스 대비 더 soft한 구조를 야기시켜 liquid-like property를 더 강화시켰다. 이러한 결과로 전단속도가 큰 영역에서 점도감소를 이끌어낸 것으로 파악된다. 또한, 전단속도가 낮은 영역에서 큰 점도변화를 보이지않은 것은 구조분석을 통하여 증명되었다. 라만분광기를 이용한 구조 분석결과 3 차원의 tetrahedral 구조를 갖는 borate 가 구조속에 첨가되어 적정한수준의 중합도 증가를 야기시켜 낮은 전단속도에서 크지않은 점도변화를 이끌어 낸 것으로 판단된다. 28.1 퍼센트의 borate 의 경우 3차원 tetradedral 구조의 borate 가 첨가되어 적절한 중합도를 이끌어내는한편 2차원 triangular 구조의 borate 가 silicate network 속으로 치환되어 몰드플럭스의 구조가 너무 stiff 하게 변하는 것을 막은 것으로 판단된다. 이러한 두가지 현상을 기반으로 강력한 전단박화 현상을 야기시킨 것으로 분석된다. steady state 점도 측정결과 1 퍼센트의 silicon nitride 는 높은전단속도에서 큰 점도 변화없이 낮은전단속도에서 점도를 증가시켜 강력한 전단박화 현상을 이끌어 내었다. dynamic 점도측정 결과 실제로, 1퍼센트의 silicon nitride 는 solid-like property를 강화 시키는 것으로 나타났다. 구조분석결과, silicon nitride 는 다른 물질보다 본딩수의 우월성을 앞세워 소량으로도 효과적으로 mold flux 구조속에 첨가되어 낮은 전단속도에서 점도상승을 이끌어낸 것으로 여겨진다. 또한, 강력한 전단박화 현상을 이루는데 부정적으로 작용할있는 몰드플럭스의 stiffness 는 소량의 첨가로인해 해소되는 것을 판단된다.
In the continuous casting process, lime silica based mold flux has been prevalently applied to the mold in order to control lubrication and heat transfer and to alleviate re-oxidation of molten steel. Especially, CaO-SiO2-CaF2 based liquid forming mold flux contacts directly to the molten steel and has an enormous impact on lubrication capability of continuous casting process. To optimize lubrication capability, the viscosity of liquid forming mold flux has to be high enough to avoid mold flux entrainment at the mold top surface where shear rates roughly equal to 10 to 40 reciprocal second, at the same time, viscosity of liquid forming mold flux should be low enough at the mold wall area where shear rate are approximately 100 and 100 reciprocal seconds in order to maximize lubrication capability. Recent advances in this field of applications have demonstrated the possibility of designing the liquid forming mold flux with a shear thinning behavior in order to overcome the contradictory condition mold flux encounters. The shear thinning behavior is one of the rheological behaviors showing Non-Newtonian behaviors which have decreased viscosity as increasing shear rate. As it is mentioned, liquid forming mold flux showing the shear thinning behavior is advantageous for the cautious casting process because shear thinning behavior makes liquid forming mold flux has high viscosity at lower shear rate and low viscosity at higher shear rate. Therefore, the present study focuses on characterizing shear thinning behavior of liquid forming mold flux and attempts to maximize this behavior by controlling structure of mold flux. Fortunately, the present study successfully cauterize shear thinning behavior of liquid forming mold flux at 1623K by measuring viscosity as a function of shear rate. To quantitatively understand shear thinning behavior of liquid forming mold flux, Oswald De Waele’s power law model had been conducted. According to the theory, as the flow behavior index, n value, decreases, the degree of shear thinning behavior increases. Viscosity measurement of 4 different types of commercialized liquid forming mold flux shows that they have a low level of shear thinning behavior with flow behavior index, n value, ranged between 0.8688 and 0.9296. In order to understand the theory behind shear thinning behavior with aforementioned flow behavior index range, Raman spectroscopic study had been conducted. The spectroscopic study results discovered that shear thinning behavior of liquid forming mold flux is related to degree of polymerization. As the degree of polymerization increases, shear thinning behavior of liquid forming mold flux becomes stronger. However, under extremely high level of polymerization degree, shear thinning behavior of liquid forming glass became weaker due to the generation of stiff structure. Hence, controlling degree of polymerization is necessary for achieving stronger shear thinning behavior of liquid forming mold flux. To enhance shear thinning behavior of liquid forming mold flux by controlling degree of polymerization, a wide range of borate has been added to one of the commercialized mold flux with basicity (CaO/SiO2 ratio) of 0.94. The borate addition range was from 6.8 to 28.1 wt percent. Within such wide range of addition, the strongest shear thinning behavior of liquid forming mold flux was achieved when borate addition was 28.1wt percent. To understand the reason for such behavior, Raman spectroscopic study was employed and conforms that 28.1wt percent of borate addition modifies mold flux structure appropriate for having strong shear thinning behavior. Out of 28.1wt precent of borate, about 7 percent of borate was combined with sodium oxide to compensate its negative charge, forming 3 dimensional [BO4] tetrahedral structure. The formed 3 dimensional borate is added to non-bridging oxygen of silicate network structure and increases degree of polymerization. However, when borate is added greater than 7 wt percent, it would rather present as it is in a form of 2 dimensional boroxol ring due to the complete consumption of sodium oxide. When borate is added greater than about 15 percent, borate begins to attack silicate network structure leading to replacement between 2 dimensional [BO3] triangular structure and 3 dimensional silicate structure. Such replacement could generate more soft structured liquid forming mold flux because [BO3] triangular borate has not only 2 dimensional structure but also lower bonding energy than silicate. Therefore, it is reasonable to state that 28.1 wt percent of borate addition generates higher polymerization degree by 3 dimensional borate addition and releases its stiffness by replacement process. When borate is added 28.1 wt percent, stronger shear thinning has been achieved by lowering viscosity at higher shear rate without significant changes in viscosity at lower shear rate. It could possibly indicate that borate addition would be effective in maximizing lubrication capability with negligible changes in liquid forming mold flux entrainment. To improve stronger shear thinning behavior by controlling degree of polymerization, silicon nitride had been added to commercialized mold flux within ranges between 0.11 and 6.57 percent. Within silicon nitride addition ranges, the strongest shear thinning behavior of liquid forming mold flux had been achieved when 1 wt percent of silicon nitride is achieved. To understand further about its structure, both Raman and XPS spectroscopic study was employed. According to the structural study, it was discovered that silicon nitride is effectively incorporated to the network system by taking advantages of its superiority in bonding number resulting in stronger shear thinning behavior. Apart from superiority in bonding numbers, silicon nitride is famous materials for enhancing thermal property by improving crosslinking ratio. For the silicon nitride incorporation, stiff structure could be avoided due to the small amount of its incorporation. When 1 wt percent of silicon nitride is added to network system, stronger shear thinning behavior of liquid forming mold flux had been achieved by increasing viscosity at lower shear rate without a significant change in viscosity at higher shear rate. This could imply that silicon nitride addition could alleviate liquid forming mold flux entrainment at the mold top surface without damaging lubrication capability at mold wall area. In conclusion, both borate and silicon nitride are effective in generating stronger shear thinning behavior of liquid forming mold flux in a very opposite manner. 28.1 wt percent of borate additive modifies structure by increasing degree of polymerization with 3 dimensional [BO4] tetrahedral structure and releasing stiff structure effect with replacement between 2 dimensional [BO3] triangular structure and 3 dimensional silicate. With such modification, 28.1 wt percent of borate decreases viscosity at higher shear rate without a significant changes in viscosity at lower shear rate. On the other hands, 1 wt of silicon nitride additive increases degree of polymerization with a small amount of addition.
URI
http://postech.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002301222
https://oasis.postech.ac.kr/handle/2014.oak/93059
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse