Open Access System for Information Sharing

Login Library

 

Article
Cited 32 time in webofscience Cited 15 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorRaeis-Hosseini, Niloufar-
dc.contributor.authorLim, Seokjae-
dc.contributor.authorHWANG, HYUNSANG-
dc.contributor.authorRHO, JUNSUK-
dc.date.accessioned2018-12-04T01:51:28Z-
dc.date.available2018-12-04T01:51:28Z-
dc.date.created2018-11-29-
dc.date.issued2018-11-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/94259-
dc.description.abstractConductive bridge random access memory (CBRAM) is a possible replacement for static field‐programmable gate arrays (FPGAs) based on random‐access memory. Ge2Sb2Te5 (GST) is used in CBRAMs as a solid electrolyte due to its high diffusion properties of active ions and scalability to obtain high‐density memory devices. Here, the trade‐off between high memory window and uniformity of CBRAM based on GST is solved by introducing N atoms into the SE. Nitrogen‐incorporated GST film (N‐GST) is proposed as a replacement for the current GST‐based CBRAMs with improved performance and better opportunities for conventional FPGA technologies. A bidirectional polarity‐dependent characteristic with high ION/IOFF ratio and satisfactory operation voltage is achieved by using N‐GST thin film in a programmable metallization cell (PMC). Integration of N atoms in the GST‐based PMC with a simple structure of Ag/ N‐GST /Pt increases the resistance ratio more than 100 times compared to an undoped one. Consistent data retention is attained in both resistance states for ≥3.5 × 104 s at temperature up to 85 °C.-
dc.languageEnglish-
dc.publisherWiley-
dc.relation.isPartOfAdvanced Electronic Materials-
dc.titleReliable Ge2Sb2Te5‐Integrated High‐Density Nanoscale Conductive Bridge Random Access Memory using Facile Nitrogen‐Doping Strategy-
dc.typeArticle-
dc.identifier.doi10.1002/aelm.201800360-
dc.type.rimsART-
dc.identifier.bibliographicCitationAdvanced Electronic Materials, v.4, no.11, pp.1800360-
dc.identifier.wosid000449545900019-
dc.date.tcdate2019-02-01-
dc.citation.number11-
dc.citation.startPage1800360-
dc.citation.titleAdvanced Electronic Materials-
dc.citation.volume4-
dc.contributor.affiliatedAuthorRaeis-Hosseini, Niloufar-
dc.contributor.affiliatedAuthorLim, Seokjae-
dc.contributor.affiliatedAuthorHWANG, HYUNSANG-
dc.contributor.affiliatedAuthorRHO, JUNSUK-
dc.identifier.scopusid2-s2.0-85050797279-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc1-
dc.type.docTypeARTICLE-
dc.subject.keywordPlusPHASE-CHANGE MEMORY-
dc.subject.keywordPlusRESISTIVE SWITCHING MEMORIES-
dc.subject.keywordPlusATOMIC SWITCH-
dc.subject.keywordPlusGE2SB2TE5 FILMS-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthorconduction mechanisms-
dc.subject.keywordAuthorGexSbxTey-
dc.subject.keywordAuthornitrogen doping-
dc.subject.keywordAuthorphase change materials-
dc.subject.keywordAuthorresistive switching memory-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

황현상HWANG, HYUNSANG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse