Open Access System for Information Sharing

Login Library

 

Article
Cited 7 time in webofscience Cited 10 time in scopus
Metadata Downloads

Low-Overhead Network-on-Chip Support for Location-Oblivious Task Placement SCIE SCOPUS

Title
Low-Overhead Network-on-Chip Support for Location-Oblivious Task Placement
Authors
KIM, GWANGSUNLEE, MICHAEL M.KIM, JOHNLEE, JAE W.ABTS, DENNISMARTY, M.
Date Issued
2014-06
Publisher
IEEE COMPUTER SOC
Abstract
Many-core processors will have many processing cores with a network-on-chip (NoC) that provides access to shared resources such as main memory and on-chip caches. However, locally-fair arbitration in multi-stage NoC can lead to globally unfair access to shared resources and impact system-level performance depending on where each task is physically placed. In this work, we propose an arbitration to provide equality-of-service (EoS) in the network and provide support for location-oblivious task placement. We propose using probabilistic arbitration combined with distance-based weights to achieve EoS and overcome the limitation of round-robin arbiter. However, the complexity of probabilistic arbitration results in high area and long latency which negatively impacts performance. In order to reduce the hardware complexity, we propose an hybrid arbiter that switches between a simple arbiter at low load and a complex arbiter at high load. The hybrid arbiter is enabled by the observation that arbitration only impacts the overall performance and global fairness at a high load. We evaluate our arbitration scheme with synthetic traffic patterns and GPGPU benchmarks. Our results shows that hybrid arbiter that combines round-robin arbiter with probabilistic distance-based arbitration reduces performance variation as task placement is varied and also improves average IPC.
URI
https://oasis.postech.ac.kr/handle/2014.oak/94317
DOI
10.1109/TC.2012.241
ISSN
0018-9340
Article Type
Article
Citation
IEEE TRANSACTIONS ON COMPUTERS, vol. 63, no. 6, page. 1487 - 1500, 2014-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse