Open Access System for Information Sharing

Login Library

 

Article
Cited 127 time in webofscience Cited 128 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorRaeis-Hosseini, Niloufar-
dc.contributor.authorPark, Youngjun-
dc.contributor.authorLee, Jang-Sik-
dc.date.accessioned2019-02-25T04:12:30Z-
dc.date.available2019-02-25T04:12:30Z-
dc.date.created2018-08-14-
dc.date.issued2018-08-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/94682-
dc.description.abstractNeuromorphic and cognitive computing with a capability of analyzing complicated information is explored as a new paradigm of intelligent systems. An implementation of a renewable material as an essential building block of an artificial synaptic device is suggested and a flexible and transparent synaptic device based on collagen extracted from fish skin is demonstrated. This device exhibits essential synaptic behaviors including analog memory characteristics, excitatory postsynaptic current, and paired-pulse facilitation as short-term plasticity. The brain-inspired electronic synapse undergoes incremental potentiation and depression when flat or bent. The device emulates spike-timing-dependent plasticity when stimulated by engineered pre- and post-neuron spikes with the appropriate time difference between the imposed pulses. The proposed synaptic device has the advantage of being biocompatible owing to use of Mg electrodes and collagen as a naturally abundant protein. This device has a potential to be used in flexible and implantable neuromorphic systems in the future.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfADVANCED FUNCTIONAL MATERIALS-
dc.titleFlexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spike-Timing-Dependent Plasticity-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.201800553-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.28, no.31-
dc.identifier.wosid000440283900003-
dc.citation.number31-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume28-
dc.contributor.affiliatedAuthorRaeis-Hosseini, Niloufar-
dc.contributor.affiliatedAuthorPark, Youngjun-
dc.contributor.affiliatedAuthorLee, Jang-Sik-
dc.identifier.scopusid2-s2.0-85051064245-
dc.description.journalClass1-
dc.description.journalClass1-
dc.type.docTypeArticle-
dc.subject.keywordPlusLONG-TERM POTENTIATION-
dc.subject.keywordPlusNONVOLATILE MEMORY-
dc.subject.keywordPlusELECTRONIC DEVICES-
dc.subject.keywordPlusHYDRATED COLLAGEN-
dc.subject.keywordPlusATOMIC SWITCH-
dc.subject.keywordPlusSYNAPSES-
dc.subject.keywordPlusMEMRISTOR-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCORTEX-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordAuthorartificial synapses-
dc.subject.keywordAuthorbiomemristor-
dc.subject.keywordAuthorflexible electronics-
dc.subject.keywordAuthorneuromorphic devices-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이장식LEE, JANG SIK
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse