Open Access System for Information Sharing

Login Library

 

Article
Cited 7 time in webofscience Cited 7 time in scopus
Metadata Downloads

Hartree-Fock study of the Anderson metal-insulator transition in the presence of Coulomb interaction: Two types of mobility edges and their multifractal scaling exponents SCIE SCOPUS

Title
Hartree-Fock study of the Anderson metal-insulator transition in the presence of Coulomb interaction: Two types of mobility edges and their multifractal scaling exponents
Authors
Lee, Hyun-JungKim, Ki-Seok
Date Issued
2018-04
Publisher
AMER PHYSICAL SOC
Abstract
We investigate the role of Coulomb interaction in the multifractality of Anderson metal-insulator transition, where the Coulomb interaction is treated within the Hartree-Fock approximation, but disorder effects are taken into account exactly. An innovative technical aspect in our simulation is to utilize the Ewald-sum technique, which allows us to introduce the long-range nature of the Coulomb interaction into Hartree-Fock self-consistent equations of order parameters more accurately. This numerical simulation reproduces the Altshuler-Aronov correction in a metallic state and the Efros-Shklovskii pseudogap in an insulating phase, where the density of states rho(omega) is evaluated in three dimensions. Approaching the quantum critical point of ametal-insulator transition from either the metallic or insulting phase, we find that the density of states is given by rho(omega) similar to |omega|(1/2), which determines one critical exponent of the McMillan-Shklovskii scaling theory. Our main result is to evaluate the eigenfunction multifractal scaling exponent alpha(q), given by the Legendre transformation of the fractal dimension tau(q), which characterizes the scaling behavior of the inverse participation ratio with respect to the system size L. Our multifractal analysis leads us to identify two kinds of mobility edges, one of which occurs near the Fermi energy and the other of which appears at a high energy, where the density of states at the Fermi energy shows the Coulomb-gap feature. We observe that the multifractal exponent at the high-energy mobility edge remains to be almost identical to that of the Anderson localization transition in the absence of Coulomb interactions. On the other hand, we find that the multifractal exponent near the Fermi energy is more enhanced than that at the high-energy mobility edge, suspected to result from interaction effects. However, both the multifractal exponents do not change even if the strength of the Coulomb interaction varies. We also show that the multifractality singular spectrum can be classified into two categories, confirming the appearance of two types of mobility edges.
URI
https://oasis.postech.ac.kr/handle/2014.oak/94986
DOI
10.1103/PhysRevB.97.155105
ISSN
2469-9950
Article Type
Article
Citation
PHYSICAL REVIEW B, vol. 97, no. 15, 2018-04
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse