Open Access System for Information Sharing

Login Library

 

Article
Cited 28 time in webofscience Cited 29 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLU, HAIDONG-
dc.contributor.authorLEE, DAESU-
dc.contributor.authorKlyukin, K.-
dc.contributor.authorTao, L.-
dc.contributor.authorWang, B.-
dc.contributor.authorLee, H.-
dc.contributor.authorLee, J.-
dc.contributor.authorPaudel, T. R.-
dc.contributor.authorChen, L.-Q.-
dc.contributor.authorTsymbal, E. Y.-
dc.contributor.authorAlexandrov, V.-
dc.contributor.authorEom, C.-B.-
dc.contributor.authorGruverman, A.-
dc.date.accessioned2019-03-07T01:19:50Z-
dc.date.available2019-03-07T01:19:50Z-
dc.date.created2019-02-28-
dc.date.issued2018-01-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/95001-
dc.description.abstractStrontium titanate (SrTiO3) is the "silicon" in the emerging field of oxide electronics. While bulk properties of this material have been studied for decades, new unexpected phenomena have recently been discovered at the nanoscale, when SrTiO3 forms an ultrathin film or an atomically sharp interface with other materials. One of the striking discoveries is room-temperature ferroelectricity in strain-free ultrathin films of SrTiO3 driven by the Ti-sr antisite defects, which generate a local dipole moment polarizing the surrounding nanoregion. Here, we demonstrate that these polar defects are not only responsible for ferroelectricity, but also propel the appearance of highly conductive channels, "hot spots", in the ultrathin SrTiO3 films. Using a combination of scanning probe microscopy experimental studies and theoretical modeling, we show that the hot spots emerge due to resonant tunneling through localized electronic states created by the polar defects and that the tunneling conductance of the hot spots is controlled by ferroelectric polarization. Our finding of the polarization-controlled defect-assisted tunneling reveals a new mechanism of resistive switching in oxide heterostructures and may have technological implications for ferroelectric tunnel junctions. It is also shown that the conductivity of the hot spots can be modulated by mechanical stress, opening a possibility for development of conceptually new electronic devices with mechanically tunable resistive states.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfNANO LETTERS-
dc.titleTunneling Hot Spots in Ferroelectric SrTiO3-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.7b04444-
dc.type.rimsART-
dc.identifier.bibliographicCitationNANO LETTERS, v.18, no.1, pp.491 - 497-
dc.identifier.wosid000420000000066-
dc.citation.endPage497-
dc.citation.number1-
dc.citation.startPage491-
dc.citation.titleNANO LETTERS-
dc.citation.volume18-
dc.contributor.affiliatedAuthorLEE, DAESU-
dc.identifier.scopusid2-s2.0-85040310530-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusRESISTIVE SWITCHING MEMORIES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusDOMAIN-STRUCTURES-
dc.subject.keywordAuthorStrontium titanate-
dc.subject.keywordAuthorresistive switching-
dc.subject.keywordAuthorferroelectric-
dc.subject.keywordAuthortunnel junctions-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse