Open Access System for Information Sharing

Login Library

 

Article
Cited 62 time in webofscience Cited 71 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorAkbarpour, M. R.-
dc.contributor.authorAlipour, S.-
dc.contributor.authorSafarzadeh, A.-
dc.contributor.authorKim, H. S.-
dc.date.accessioned2019-04-07T15:00:50Z-
dc.date.available2019-04-07T15:00:50Z-
dc.date.created2019-02-07-
dc.date.issued2019-02-
dc.identifier.issn1359-8368-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/95301-
dc.description.abstractIn the present study, wear and friction behavior of Cu matrix composites reinforced with simultaneous SiC-nanoparticle and multi-wall carbon nanotube (CNT) reinforcements were investigated and a relationship for the theoretical calculation of the friction coefficient of the hybrid composites was presented. The hybrid composites showed higher wear resistance and lower friction coefficients compared to monolithic copper. The results indicate that among the synthesized composites, Cu-(2 vol% SiC + 4 vol% CNT) represented the highest wear resistance as well as relatively high hardness. In addition, a lower friction coefficient and a lower oscillation were observed with this sample, compared to other hybrid composite samples. This was attributed to the formation of a continuous and uniform lubricant layer on the wear surface. Flake formation-spalling were detected as the dominant wear mechanism for the hybrid composites.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.relation.isPartOfCOMPOSITES PART B-ENGINEERING-
dc.titleWear and friction behavior of self-lubricating hybrid Cu-(SiC plus x CNT) composites-
dc.typeArticle-
dc.identifier.doi10.1016/j.compositesb.2018.09.039-
dc.type.rimsART-
dc.identifier.bibliographicCitationCOMPOSITES PART B-ENGINEERING, v.158, pp.92 - 101-
dc.identifier.wosid000455690900010-
dc.citation.endPage101-
dc.citation.startPage92-
dc.citation.titleCOMPOSITES PART B-ENGINEERING-
dc.citation.volume158-
dc.contributor.affiliatedAuthorKim, H. S.-
dc.identifier.scopusid2-s2.0-85054026189-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON NANOTUBE-
dc.subject.keywordPlusTRIBOLOGICAL PROPERTIES-
dc.subject.keywordPlusREINFORCED COPPER-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusALUMINUM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOEFFICIENT-
dc.subject.keywordAuthorComposites-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorHybrid-
dc.subject.keywordAuthorSelf-lubrication-
dc.subject.keywordAuthorWear-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse