Open Access System for Information Sharing

Login Library

 

Article
Cited 303 time in webofscience Cited 340 time in scopus
Metadata Downloads

3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering SCIE SCOPUS

Title
3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering
Authors
Kim, Byoung SooKwon, Yang WooKONG, JEONG SIKPark, Gyu TaeGE, GAOWONIL, HANKim, Moon-BumLee, HyungseokKim, Jae HoCho, Dong-Woo
Date Issued
2018-06
Publisher
ELSEVIER SCI LTD
Abstract
3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D prevascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPC5)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing. (C) 2018 Elsevier Ltd. All rights reserved.
URI
https://oasis.postech.ac.kr/handle/2014.oak/95867
DOI
10.1016/j.biomaterials.2018.03.040
ISSN
0142-9612
Article Type
Article
Citation
BIOMATERIALS, vol. 168, page. 38 - 53, 2018-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse