Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 7 time in scopus
Metadata Downloads

Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513 K to 1873 K (1240 degrees C to 1600 degrees C) SCIE SCOPUS

Title
Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513 K to 1873 K (1240 degrees C to 1600 degrees C)
Authors
Tafwidli, FahmiChoi, Moo-EobYi, Sang-HoKang, Youn-Bae
Date Issued
2018-06
Publisher
SPRINGER
Abstract
Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C](0), in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 degrees C to 1500 degrees C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised evaporation model was used in order to explain the experimental data, and it showed good agreement. In particular, it was found that the temperature showed a significant effect on the evaporation rate, and the effect of temperature and C content on the activity coefficients of Cu, Sn, and S also significantly affected the evaporation rate. The chemical reaction rate constant of the individual evaporation reaction (k(i)(R)) and residual rate constant (k(i)(r)) could be obtained as a function of temperature. The activation energy of each evaporation reaction was derived and discussed. The evaporation rate model can be applied in order to predict the content of Cu and Sn remaining in liquid iron under various conditions of temperature and [pct C].
URI
https://oasis.postech.ac.kr/handle/2014.oak/95878
DOI
10.1007/s11663-018-1198-7
ISSN
1073-5615
Article Type
Article
Citation
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS, vol. 49, no. 3, page. 1089 - 1100, 2018-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

강윤배KANG, YOUN-BAE
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse