Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Systematic Tuning of Hydrogen-induced Phase Transition in VO2 Epitaxial Thin Film

Title
Systematic Tuning of Hydrogen-induced Phase Transition in VO2 Epitaxial Thin Film
Authors
SON, JUNWOO윤효진최민석박재성임태원임규욱최시영
Date Issued
2018-04-13
Publisher
한국세라믹학회
Abstract
Phase transition by band filling control is one of the core concepts in correlated electronic systems. Unlike the substitutional dopants, hydrogen plays a key role in effectively filling significant amount of carriers in the empty narrow d band by reversibly adding it into interstitial sites and supplying carriers. Vanadium dioxide (VO2), typical correlated oxide with 3d 1 electronic configuration, can also reversibly incorporate hydrogen atoms into its interstitial sites and simultaneously occurs phase transition by its 3d band filling. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process demonstrates two-step insulator (VO2) – metal (HxVO2) – insulator (HVO2) phase modulation during inter-integer d-band filling. Moreover, HVO2 can be thermodynamically stabilized regardless of facet direction of VO2 epilayer, but remarkable discrepancy in kinetics of phase modulation was clearly visualized depending on the crystal facet. The unprecedented insulating HVO2 with 3d 2 configuration is attributed to highly doped electrons via hydrogenation process in conjunction with huge lattice expansion. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.
URI
https://oasis.postech.ac.kr/handle/2014.oak/98222
Article Type
Conference
Citation
2018 한국세라믹학회 춘계학술대회, 2018-04-13
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse