Open Access System for Information Sharing

Login Library

 

Article
Cited 5 time in webofscience Cited 7 time in scopus
Metadata Downloads

Spin-coupling-induced Improper Polarizations and Latent Magnetization in Multiferroic BiFeO3 SCIE SCOPUS

Title
Spin-coupling-induced Improper Polarizations and Latent Magnetization in Multiferroic BiFeO3
Authors
Jang, Hyun MyungHan, HyeonLee, Jung-Hoon
Date Issued
2018-01
Publisher
Nature Publishing Group
Abstract
Multiferroic BiFeO3 (BFO) that exhibits a gigantic off-centering polarization (OCP) is the most extensively studied material among all multiferroics. In addition to this gigantic OCP, the BFO having R3c structural symmetry is expected to exhibit a couple of parasitic improper polarizations owing to coexisting spin-polarization coupling mechanisms. However, these improper polarizations are not yet theoretically quantified. Herein, we show that there exist two distinct spin-coupling-induced improper polarizations in the R3c BFO on the basis of the Landau-Lifshitz-Ginzburg theory: Delta P-LF arising from the Lifshitz gradient coupling in a cycloidal spin-density wave, and Delta P-ms originating from the biquadratic magnetostrictive interaction. With the help of ab initio calculations, we have numerically evaluated magnitudes of these improper polarizations, in addition to the estimate of all three relevant coupling constants. We further predict that the magnetic susceptibility increases substantially upon the transition from the bulk R3c BFO to the homogeneous canted spin state in a constrained epitaxial film, which satisfactorily accounts for the experimental observation. The present study will help us understand the magnetoelectric coupling and shed light on design of BFO-based materials with improved multiferroic properties.
URI
https://oasis.postech.ac.kr/handle/2014.oak/99326
DOI
10.1038/s41598-017-18636-9
ISSN
2045-2322
Article Type
Article
Citation
Scientific Reports, vol. 8, no. 1, 2018-01
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장현명JANG, HYUN MYUNG
Div of Advanced Materials Science
Read more

Views & Downloads

Browse