Open Access System for Information Sharing

Login Library

 

Article
Cited 82 time in webofscience Cited 80 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorJO, YONGHEE-
dc.contributor.authorCHOI, WON MI-
dc.contributor.authorKIM, DONGGEUN-
dc.contributor.authorZARGARAN, ALIREZA-
dc.contributor.authorSOHN, SEOK SU-
dc.contributor.authorKIM, HYOUNG SEOP-
dc.contributor.authorLEE, BYEONG JOO-
dc.contributor.authorKIM, NACK JOON-
dc.contributor.authorLEE, SUNG HAK-
dc.date.accessioned2019-07-08T02:10:04Z-
dc.date.available2019-07-08T02:10:04Z-
dc.date.created2019-06-30-
dc.date.issued2019-01-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/99338-
dc.description.abstractWe introduce a novel transformation-induced plasticity mechanism, i.e., a martensitic transformation from fcc phase to bcc phase, in medium-entropy alloys (MEAs). A VCrFeCoNi MEA system is designed by thermodynamic calculations in consideration of phase stability between bcc and fcc phases. The resultantly formed bcc martensite favorably contributes to the transformation-induced plasticity, thereby leading to a significant enhancement in both strength and ductility as well as strain hardening. We reveal the microstructural evolutions according to the Co-Ni balance and their contributions to a mechanical response. The Co-Ni balance plays a leading role in phase stability and consequently tunes the cryogenic-temperature strength-ductility balance. The main difference from recently-reported metastable high-entropy dual-phase alloys is the formation of bcc martensite as a daughter phase, which shows significant effects on strain hardening. The hcp phase in the present MEA mostly acts as a nucleation site for the bcc martensite. Our findings demonstrate that the fcc to bcc transformation can be an attractive route to a new MEA design strategy for improving cryogenic strength-ductility.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfScientific Reports-
dc.titleFCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35-x medium-entropy alloys-
dc.typeArticle-
dc.identifier.doi10.1038/s41598-019-39570-y-
dc.type.rimsART-
dc.identifier.bibliographicCitationScientific Reports, v.9, no.1, pp.2948-
dc.identifier.wosid000459799800097-
dc.citation.number1-
dc.citation.startPage2948-
dc.citation.titleScientific Reports-
dc.citation.volume9-
dc.contributor.affiliatedAuthorJO, YONGHEE-
dc.contributor.affiliatedAuthorCHOI, WON MI-
dc.contributor.affiliatedAuthorKIM, DONGGEUN-
dc.contributor.affiliatedAuthorZARGARAN, ALIREZA-
dc.contributor.affiliatedAuthorSOHN, SEOK SU-
dc.contributor.affiliatedAuthorKIM, HYOUNG SEOP-
dc.contributor.affiliatedAuthorLEE, BYEONG JOO-
dc.contributor.affiliatedAuthorKIM, NACK JOON-
dc.contributor.affiliatedAuthorLEE, SUNG HAK-
dc.identifier.scopusid2-s2.0-85062297513-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTACKING-FAULT ENERGY-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusMARTENSITIC-TRANSFORMATION-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusTENSILE-
dc.subject.keywordPlusMN-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusDUCTILITY-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이성학LEE, SUNG HAK
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse