Open Access System for Information Sharing

Login Library

 

Article
Cited 36 time in webofscience Cited 37 time in scopus
Metadata Downloads

All-Solid-State Synaptic Transistors with High-Temperature Stability Using Proton Pump Gating of Strongly Correlated Materials SCIE SCOPUS

Title
All-Solid-State Synaptic Transistors with High-Temperature Stability Using Proton Pump Gating of Strongly Correlated Materials
Authors
Oh, C.Jo, M.Son, J.
Date Issued
2019-05
Publisher
AMER CHEMICAL SOC
Abstract
Designing energy-efficient artificial synapses with adaptive and programmable electronic signals is essential to effectively mimic synaptic functions for brain-inspired computing systems. Here, we report all-solid-state three-terminal artificial synapses that exploit proton-doped metal-insulator transition in a correlated oxide NdNiO3 (NNO) channel by proton (H+) injection/extraction in response to gate voltage. Gate voltage reversibly controls the H+ concentration in the NNO channel with facile H+ transport from a H+-containing porous silica electrolyte. Gate-induced H+ intercalation in the NNO gives rise to nonvolatile multilevel analogue states due to H+-induced conductance modulation, accompanied by significant modulation of the out-of-plane lattice parameters. This correlated transistor operated by a proton pump shows synaptic characteristics such as long-term potentiation and depression, with nonvolatile and distinct multilevel conductance switching by a low voltage pulse (>= SO mV), with high energy efficiency (similar to 1 pJ) and tolerance to heat (<= 1.50 degrees C). These results will guide the development of scalable, thermally-stable solid-state electronic synapses that operate at low voltage.
URI
https://oasis.postech.ac.kr/handle/2014.oak/99920
DOI
10.1021/acsami.9b00392
ISSN
1944-8244
Article Type
Article
Citation
ACS APPLIED MATERIALS & INTERFACES, vol. 11, no. 17, page. 15733 - 15740, 2019-05
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse