Open Access System for Information Sharing

Login Library

 

Article
Cited 406 time in webofscience Cited 407 time in scopus
Metadata Downloads

Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling SCIE SCOPUS

Title
Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling
Authors
Haney, PMLee, HWLee, KJManchon, AStiles, MD
Date Issued
2013-05-07
Publisher
AMER PHYSICAL SOC
Abstract
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
URI
https://oasis.postech.ac.kr/handle/2014.oak/12290
DOI
10.1103/PHYSREVB.87.174411
ISSN
1098-0121
Article Type
Article
Citation
PHYSICAL REVIEW B, vol. 87, no. 17, page. 174411, 2013-05-07
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse